共查询到20条相似文献,搜索用时 15 毫秒
1.
用隔离板对直径为D, 沿流向振荡的圆柱后涡脱落进行抑制. 隔离板放于圆柱尾流中心线上,控制参数包括隔离板长度L/D以及隔离板前缘到柱体振荡中心的距离G/D. 实验的雷诺数范围Re=V∞D/v=1.01×104~1.69×104,柱体折减振频范围feD/V∞=0~0.03, 柱体振幅固定为A/D=0.2. 风洞烟线显示和热线测量结果表明:当 G/D位于一个有效区域内时,可有效抑制振荡柱体尾流的旋涡脱落. 该有效区的大小随着隔离板板长的增大而增大, 随着Re数和圆柱振荡频率的增大而减小. 相似文献
2.
用窄条形控制件对截面宽度为B、厚度为H的矩形柱体绕流的旋涡脱落进行抑制.实验在风洞中进行, 实验范围为B/H=2.0~5.0,Re=V∞H/\nu=3.75× 103~1.05×104. 矩形柱的宽边B与来流平行, 窄条与柱体等长, 且两者轴线相互平行放置. 窄条宽度为b/H=0.5, 窄条厚度远小于其宽度; 窄条位置可变, 但窄条表面保持与来流垂直. 尾流脉动速度测量和流动显示结果表明: 当窄条位于一个有效区内时, 矩形柱体两侧的旋涡脱落被抑制; 而当窄条位于一个单侧有效区内时, 矩形体一侧的旋涡脱落被抑制, 在另一侧旋涡脱落却仍存在. 有效区范围从矩形体的上游某点一直延续到矩形体的下游某点. 单侧有效区将整个有效区围在其中. 有效区和单侧有效区范围随着B/H的增大而增大, 但随着Re的增大而减小. 相似文献
3.
《Journal of Fluids and Structures》2001,15(1):23-37
The present paper describes a new active method for controlling vortex shedding from a circular cylinder in a uniform flow at medium Reynolds numbers. It uses rotary cylinder oscillations controlled by the feedback signal of a reference velocity in the cylinder wake. The effectiveness of this feedback control is evaluated by measuring the response of mean and fluctuating velocities in the cylinder wake, the spanwise correlation, the power spectrum, and the fluid forces acting on the cylinder. It is found that the velocity fluctuations and the fluid forces are both reduced by the feedback control with optimum values of the phase lag and feedback gain. The simultaneous flow visualization synchronized with the cylinder oscillation indicates the attenuation as well as the mechanisms of vortex shedding under the feedback control, which is due to the dynamic effect of cylinder oscillation on the vortex formation. 相似文献
4.
《Journal of Fluids and Structures》1999,13(7-8):791-811
In this paper the various types of vortex generation and the related response characteristics of bluff bodies are described. The vortices are, in general, generated by a certain stimulation, leading to one- or two-shear layer instability; the related unsteady forces could excite flexible structures such as tall towers, tall buildings and long-span bridges. Karman vortex shedding is well known as the alternate shedding vortex behind bluff bodies, but the one-shear layer instability related vortices and symmetrical vortex shedding should also be taken into account as additional mechanisms for the evaluation of structural safety, because they result in structural response at comparatively low wind speeds. In this paper, the symmetrical vortex shedding, which is enhanced by the longitudinally fluctuating flow for 2-D rectangular cylinders with a 0.5 side ratio, and one-shear layer related vortices, which are generated on the side surfaces of flat 2-D rectangular cylinders and many bridge girder box sections by the stimulation of body motion or applied sound, are introduced. Furthermore, as a peculiar 3-D vortex, the “axial vortex”, which is formed in near wake of inclined cables and then over restricted velocity ranges, is also discussed. 相似文献
5.
5∶1矩形柱体被认为是通用桥面几何形状的代表,其简化模型可以用来进行风振控制的研究。风嘴作为一种常用的流动控制装置,能起到减阻和增加矩形板气动稳定性的效果,但控制装置对强迫振荡柱体的控制机理仍缺乏研究。研究者通过对节段模型施加强迫振动,在实验模型前部施加边缘型对称型风嘴,研究控制装置对矩形板尾流旋涡脱落的影响。通过流动显示结果,总结了施加风嘴后的四种旋涡脱落模式。并通过快速傅里叶变化频域分析法,得到实验模型后缘X/D = 10处的速度功率谱。施加风嘴控制能增大旋涡脱落频率,并抑制尾流旋涡脱落的能量。而数值模拟得到的不同实验工况下的升力均方根和力矩均方根显著减小,最大降幅分别为52%和23%,表明矩形板气动稳定性的提升和尾流不稳定性的减弱。
相似文献6.
7.
《Journal of Fluids and Structures》2002,16(6):773-794
Vortex shedding from an oscillating circular cylinder is studied by numerical solutions of the two-dimensional unsteady Navier–Stokes equations. A physically consistent method is used for the reconstruction of velocity fluxes which arise from discrete equations for the mass and momentum balances. This method ensures a second-order accuracy. Two phenomena are investigated and, in both cases, the cylinder oscillation is forced. The first is the flow induced by the harmonic in-line oscillation of cylinder in water at rest. The Reynolds number is equal to 100 and the Keulegan–Carpenter number is equal to 5. A comparison of phase-averaged velocity vectors between measurements and predictions is presented. Applying the widely used model of Morison to the computed in-line force history, the drag and the inertia coefficients are calculated and compared for different grid levels. Using these to reproduce the force functions, deviations from those originally computed are revealed. The second problem is an investigation of a transversely oscillating cylinder in a uniform flow at fixed Reynolds number equal to 185. The cylinder oscillation frequency ranges between 0·80 and 1·20 of the natural vortex-shedding frequency, and the oscillation amplitude is 20% of the cylinder diameter. As the frequency of excitation of the cylinder increases relative to the inherent vortex formation frequency, the initially formed concentration of vorticity moves closer to the cylinder until a limiting position is reached. At this point, the vorticity concentration abruptly switches to the opposite side of the cylinder. This process induces distinct changes of the topology of the corresponding streamline patterns. 相似文献
8.
Vortex shedding resonance of a circular cylinder wake to a forced rotational oscillation has been investigated experimentally by measuring the velocity fluctuations in the wake, pressure distributions over the cylinder surface, and visualizing the flow field with respect to cylinder oscillations. The vortex shedding resonance occurs near the natural shedding frequency at small amplitude of cylinder oscillations, while the peak resonance frequency shifts to a lower value with an increase in oscillation amplitude. The drag and lift forces acting on the cylinder at fixed forcing Strouhal number indicate that the phase lag of fluid forces to the cylinder oscillations increases with an increase in oscillation amplitude, supporting the variation of resonance frequency with oscillation amplitude. The comparative study of the measured pressure distributions and the simultaneous flow visualizations with respect to cylinder rotation shows the mechanisms of phase lag, which is due to the strengthened vortex formation and the modification of the surface pressure distributions. 相似文献
9.
《Journal of Fluids and Structures》2002,16(4):453-463
The vortex shedding in the wake behind linearly tapered circular cylinders has been considered for the two taper ratios 75:1 and 100:1. The Reynolds number based on the velocity of the incoming flow and the largest diameter was in the range from 130 to 180. The low Reynolds number assured that laminar flow prevailed in the entire flow field. The full unsteady three-dimensional Navier–Stokes equations were solved numerically with the view of exploring the rather complex vortex shedding phenomena caused by the variation of the natural shedding frequency along the span of the cylinder. The accurate computer simulations showed that this variation gave rise to discrete shedding cells, each with its own characteristic frequency and inclined with respect to the axis of the cylinder. Flow visualizations revealed that vortex dislocation and splitting took place in the numerically simulated flow fields. The computer simulations compared surprisingly well with the extensive laboratory experiments reported by Piccirillo & Van Atta in 1993 for a range of comparable conditions; this has enabled detailed analyses of other flow variables (notably pressure and vorticity) than those readily accessible in a physical experiment. However, distinct differences in the vortex dynamics are observed in some of the cases. 相似文献
10.
This note presents flow visualization results to show the response of wake flows behind a cylinder to the feedback suppression and excitation. The experiments were conducted in a water channel and the feedback perturbations were introduced into the wake by oscillating the cylinder transverse to the oncoming flow. The visualization photographs directly illustrated the wake flows under the feedback suppression and excitation at Reynolds numbers up to 25% above the natural onset Reynolds number for vortex shedding. 相似文献
11.
对平面混合层绕流圆柱时的旋涡脱落和流动结构进行了数值研究。方法是用一空间、时间三阶精度的有限差分格式解二维不可压Navier-Stokes方程和连续性方程。计算时雷诺数Re取为1000,混合层速度比Ra从0到1,混合层动量厚度θ由0.2到2。 相似文献
12.
通过求解采用ALE方法描述的运动坐标系Navier-Stokes方程组,分析均匀来流下雷诺
数为150的静止和流向振荡的圆柱绕流. 主要研究了强迫振荡频率和较大振幅比
(A/D=0.3-1.2)对圆柱升力、阻力变化特性以及涡脱落模态的影响. 研究表
明,流向振荡圆柱绕流存在多种涡脱落模态,如对称S以及反对称A-I, A-III,
A-IV等多种形式;比较研究结果,拓展了各模态下对应的锁定区域,并将其分为5个
子区;A-I模态中圆柱受力较以前所知更复杂;通过分析计算结果,发现最大加速度
比Af_{c}^{2}/Df_{s0}^{2}可能是涡脱落模态(尤其是对称S模态)最有效的控制参数. 相似文献
13.
《Journal of Fluids and Structures》2002,16(1):113-119
The performance of active control of vortex shedding from a circular cylinder is studied experimentally with rotational feedback oscillations. The optimization of the control parameters, such as the phase lag, the feedback gain, and the position of reference sensor are carried out using neural networks to minimize the reference velocity fluctuations in the cylinder wake. Measurement of pressure distributions over the circular cylinder under the optimum control indicate that the drag force is reduced by 16% and the lift force is suppressed by more than 70% in comparison with the stationary cylinder. 相似文献
14.
本文用激光测速技术观测到,在雷诺数50至250的范围内,圆柱体绕流的旋涡脱落频率与来流流速之间的关系存在不连续的突变。为了避免前人实验中存在的疑点,本文用FFT技术对信号进行分析以提高频率的测量精度;用锁相环跟踪技术以实现频率-流速关系的连续自动记录。本文得出,当雷诺数达到150—160时,旋涡脱落频率与来流流速的关系突然由一直线下降到另一直线,频率减小约3%。 相似文献
15.
横向强迫振荡柱体尾流控制是柱体涡激振动控制的基础,在海洋、土木等工程中具有重要意义. 横向强迫振荡柱体尾流中存在一种锁频旋涡脱落模式,即在一个振荡周期内柱体上、下侧各脱落旋转方向相反的一对涡,称为2P模式. 本文将相对宽度b/D=0.32的窄条控制件置于横向强迫振荡柱体下游,对振幅比A/D=1.25, 无量纲振频f_e D/V_∞=0.22,雷诺数Re=1 200的2P模式旋涡脱落进行干扰,并通过改变控制件位置,研究旋涡的变化规律. 采用二维大涡模拟和实验验证方法进行研究,在控制件位置范围0.8≤X/D≤3.2, 0.4≤Y/D≤3.2内,得到了2P, 2S, P+S和另外6种新发现的旋涡脱落模式,并对各模式旋涡的形成过程作了详细描述. 在控制件位置平面上给出了各旋涡模式的存在区域,画出了旋涡脱落强度的等值线图,并发现在一个相当大的区域内,旋涡脱落强 度可减小一半以上,尾流变窄. 发现柱体大幅振荡引起的横向剪切流在旋涡生成中起关键作用. 探讨了控制件对横向剪切流的影响,分析了控制件在每种旋涡模式形成中的作用机制. 相似文献
16.
C. MENSINK 《国际流体数值方法杂志》1996,22(9):881-897
Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, solving the 2D compressible Reynolds-averaged Navier–Stokes equations on a set of non-overlapping grid blocks that are connected in a conservative way. Comparisons are made with experimental results previously obtained by Sieverding and Heinemann. 相似文献
17.
利用改进型延迟分离涡模拟方法对缩尺比例1:30的高速列车简化模型的绕流流场进行数值计算,主要针对近尾流区的涡旋结构展开具体讨论. 通过不同的涡旋识别方法,发现在尾涡结构中,高涡量的强涡旋主要聚集于尾车附近,而涡量较低但处于相对稳定状态的涡旋分布在大部分尾流空间中. 对此,主要基于最新提出的涡旋定义及其物理意义认为,由于边界层在尾部发生的流动分离,剪切变形以及高涡量的扩散对强涡旋的形成发挥着重要的作用,而涡旋会被较强的剪切旋转拉伸,使得局部复杂的流动表现出突出的湍流特性;另一方面,尽管涡强度明显下降,但是在强剪切应变迅速衰减的情况下,流向涡核中的涡旋涡量是主要的,此时,在较接近地面的情况下,流体微团以涡核为中心的旋转运动使得涡旋与地面之间的相互作用成为主导的流动机制. 虽然涡强度会相对缓慢地衰减,但是从湍流能量产生的角度,该机制对涡旋的自维持发挥重要的作用,从而使尾涡结构能够相对稳定地存在于尾流流动中. 相似文献
18.
19.
采用快速拉格朗日涡方法数值模拟有复杂旋涡运动的非定常流动. 利用离散涡元模拟旋涡的产生、聚集和输送过程. 拉格朗日描述法用来计算离散涡元的移动,而移动速度则利用广义毕奥-萨伐尔公式结合快速多极子展开法计算,修正的涡半径扩散模型用来模拟离散涡元的黏性扩散. 突然起动圆柱和大攻角下突然起动翼型的非定常有涡流动的数值模拟,及其与试验结果的对比验证了方法的有效性. 另外,大攻角下突然起动翼型的计算结果给出了翼型起动后吸力面旋涡的产生、发展,周期性非定常流动的形成,以及尾流旋涡结构等一些重要的流动特征.[关键词] 非定常流有涡流动快速涡方法 相似文献
20.
A. KOURTA 《国际流体数值方法杂志》1996,22(6):449-465
The present work is devoted to the numerical simulation of two important phenomena in the field of solid propellant rocket motors: the first is acoustic boundary layers that develop above the burning propellant; the other is a periodic vortex-shedding phenomenon which is the result of a strong coupling between the instability of mean flow shear layers and acoustic motions in the chamber. To predict the acoustic boundary layer, computations were performed for the lower half of a rectangular chamber with bottom-side injection. The outflow pressure is sinusoidally perturbed at a given frequency. For the highest CFL numbers the implicit scheme is not able to compute the unsteadiness in the acoustic boundary layer. With very low CFL numbers or with the explicit scheme the main features of the acoustic field are captured. To simulate the vortex-shedding mechanismin a segmented solid rocket motor, the explicit version is used. This computation shows a mechanism for ‘self-excited’ vortex shedding close to the second axial mode frequency. The use of the flux-splitting technique reduces substantially the amplitude of the oscillations. A few iterations are done with flux splitting, then the computation is performed without this technique. In this case both the frequency and the intensity are well predicted. A geometry more representative of the solid rocket motor is also computed. In this case the vortex-shedding process is more complex and pairing is observed. 相似文献