首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper describes an experimental study of stress-induced martensitic phase transformation in the SMA Nickel-Titanium. The rich local thermo-mechanical interactions that underlie transformation are examined using three-dimensional Digital Image Correlation (strain fields) and infrared imaging (thermal fields). We quantify the complex local interactions between released/absorbed latent heat and the extent of transformation, and explore the characteristics of the phase fronts and the evolution of martensitic volume fraction. We also quantify a strong strain memory in the martensite that forms in the wake of the phase transformation front. The accommodated strain in the martensite will remain constant during loading, even as the existing phase front propagates. There also exists a remarkable strain memory in the martensite that persists from cycle to cycle, indicating that the local elastic stress fields in the martensite are driven by a dislocation structure and martensitic nuclei that largely stabilize during the first loading cycle.  相似文献   

2.
The effects of the inelastic deformation of the matrix on the overall hysteretic behavior of a unidirectional titanium–nickel shape-memory alloy (TiNi-SMA) fiber composite and on the local pseudoelastic response of the embedded SMA fibers are studied under the isothermal loading and unloading condition. The multiaxial phase transformation of the SMA fibers is predicted using the phenomenological constitutive equations which can describe the two-step deformation due to the rhombohedral and martensitic transformations, and the inelastic behavior of the matrix material using the standard nonlinear viscoplastic model. The average behavior of the SMA composite is evaluated with the micromechanical method of cells. It is observed that the inelastic deformation of the matrix due to prior tension results in a compressive stress in the matrix after unloading of the SMA composite and this residual stress impedes the complete recovery of the pseudoelastic strain of the SMA fibers. This explains that a closed hysteresis behavior of the SMA composite is no longer observed in contrast with the case that an elastic behavior of matrix is assumed. The predicted local stress–strain behavior indicates that the cyclic response of matrix is crucial to the design of the hysteretic performance of the SMA composite under the repeated loading conditions.  相似文献   

3.
Based on the knowledge of the anisotropy associated with the martensitic transformations obtained from tension/compression experiments with oriented CuAlNi single crystals, a simple constant stress averaging approach is employed to model the SMA polycrystal deformation behaviors. Only elastic and inelastic strains due to the martensitic transformation, variant reorientations in the martensite phase and martensite to martensite transformations in thermomechanical loads are considered. The model starts from theoretical calculation of the stress-temperature transformation conditions and their orientation dependence from basic crystallographic and material attributes of the martensitic transformations. Results of the simulations of the NiTi, NiAl, and Cu-based SMA polycrystals in stress–strain tests are shown. It follows that SMA polycrystals, even with randomly oriented grains, typically exhibit tension/compression asymmetry of the shape of the pseudoelastic σε curves in transformation strain, transformation stress, hysteresis widths, character of the pseudoelastic flow and in the slope of temperature dependence of the transformation stresses. It is concluded that some macroscopic features of the SMA polycrystal behaviors originate directly from the crystallography of the undergoing MT's. The model shows clearly the crystallographic origin of these phenomena by providing a link from the crystallographic and material attributes of martensitic transformations towards the macroscopic σεT behaviors of SMA polycrystals.  相似文献   

4.
The phenomenological SMA equations developed in Part I are used in this second paper to derive the free energy and dissipation of a SMA composite material. The derivation consists of solving a boundary value problem formulated over a mesoscale representative volume element, followed by an averaging procedure to obtain the macroscopic composite constitutive equations. Explicit equations are derived for the transformation tensors that relate the composite transformation strain rate to the phase transformation rate in the fiber and matrix. Some key findings for the two-way SME in a SMA fiber/elastomer matrix composite are that processing-induced residual stresses alter the composite austenite start and martensite start temperatures, as well as the amount of composite strain recovered during a complete cycle of temperature and fiber martensite volume fraction. Relative to the two-way SME response of stiff-matrix composites, it was found that compliant-matrix composites: (1) complete the phase transformation over a narrower temperature range; (2) exhibit greater transformation strain during the reverse transformation; and (3) undergo an incomplete strain cycle during a complete cycle of temperature and fiber martensite volume fraction. Due to the interaction of the fiber and matrix during transformation, macroscopic proportional stressing of the composite results in non-proportional fiber stressing, which in turn causes a small amount of martensitic reorientation to occur simultaneously with the transformation.  相似文献   

5.
基于Lagoudas形状记忆合金(SMA)三维本构模型,假设材料为各向同性,推导了SMA平面应力状态的增量型本构方程,继而编写了ABAQUS用户自定义材料(UMAT)子程序,研究了在双向拉伸情况下,外载荷、温度、椭圆孔口长短轴之比对超弹性SMA椭圆孔口板中应力诱发马氏体相变区的影响。数值结果表明:应力诱发马氏体相变首先发生在椭圆孔口长轴端点部位,在外加载荷作用下逐渐扩展到板内,并由内向外形成马氏体相区、相变混合区和奥氏体相区;SMA板内应力诱发马氏体完全相变区面积与施加外载荷成正相关,与温度成负相关;随着椭圆孔口长短轴之比增大,SMA板内应力诱发马氏体完全相变区面积呈现出先减小后增大的趋势;拉应力差值相同时,相较于拉应力沿椭圆孔口长轴方向较大的情况,当拉应力沿椭圆孔口短轴方向较大时,SMA板内完全相变区面积较大,椭圆孔口周边应力集中现象更明显。  相似文献   

6.
采用基于第二近邻修正型嵌入原子势的分子动力学方法研究了纳米单晶NiTi合金的单程形状记忆效应,详细阐明了温度诱发马氏体相变和应力诱发马氏体重定向过程中纳米单晶的变形行为和微结构演化,进一步分析了加/卸载速率对NiTi合金单程形状记忆效应的影响。结果表明,NiTi纳米单晶在应力加载过程中发生马氏体重定向,卸载后存在残余应变;当加热到奥氏体转变结束温度以上时,马氏体逆相变为奥氏体相,残余应变逐渐减小,但未完全回复;随着应力加载速率的增加,重定向临界应力和模量逐渐增加;再次降温过程中不同加载速率下的原子结构演化各不相同。  相似文献   

7.
采用基于第二近邻修正型嵌入原子势的分子动力学方法研究了纳米单晶NiTi合金的单程形状记忆效应,详细阐明了温度诱发马氏体相变和应力诱发马氏体重定向过程中纳米单晶的变形行为和微结构演化,进一步分析了加/卸载速率对NiTi合金单程形状记忆效应的影响。结果表明,NiTi纳米单晶在应力加载过程中发生马氏体重定向,卸载后存在残余应变;当加热到奥氏体转变结束温度以上时,马氏体逆相变为奥氏体相,残余应变逐渐减小,但未完全回复;随着应力加载速率的增加,重定向临界应力和模量逐渐增加;再次降温过程中不同加载速率下的原子结构演化各不相同。  相似文献   

8.
基于Ginzburg-Landau动力学控制方程建立了NiTi形状记忆合金非等温相场模型,实现了对NiTi合金内应力诱导马氏体相变的数值模拟。同时将晶界能密度引入系统局部自由能密度,从而考虑多晶系统中晶界的重要作用。数值计算了单晶和多晶NiTi形状记忆合金在单轴机械载荷作用下微结构的动态演化过程和宏观力学行为,并重点研究了晶粒尺寸为60 nm的NiTi纳米多晶在低应变率下(0.000 5~15 s-1)力学行为的本征应变率敏感性。研究结果表明,单晶NiTi合金系统高温拉伸-卸载过程中马氏体相变均匀发生,未形成奥氏体-马氏体界面。而纳米多晶系统在加载阶段出现了马氏体带的形成-扩展现象,在卸载阶段出现了马氏体带的收缩-消失现象。相同外载作用过程中,NiTi单晶系统的宏观应力-应变曲线具有更大的滞回环面积,拥有更优的超弹性变形能力。计算结果显示,在中低应变率下纳米晶NiTi形状记忆合金应力-应变关系表现出较明显的应变率相关性,应变率升高导致材料相变应力提升。这一应变率相关性主要源于相场模型中外加载荷速率与马氏体空间演化速度的相互竞争关系。  相似文献   

9.
The purpose of the present study is to thoroughly understand the stress–strain behavior of polycrystalline NiTi deformed under tension versus compression. To do this, a micro-mechanical model is used which incorporates single crystal constitutive relationships and experimentally measured polycrystalline texture into the self-consistent formulation. For the first time it is quantitatively demonstrated that texture measurements coupled with a micro-mechanical model can accurately predict tension/compression asymmetry in NiTi shape memory alloys. The predicted critical transformation stress levels and transformation stress–strain slopes under both tensile and compressive loading are consistent with experimental results. For textured polycrystalline NiTi deformed under tension it is demonstrated that the martensite evolution is very abrupt, consistent with the Luders type deformation experimentally observed. The abrupt transformation under tension is attributed to the fact that the majority of the grains are oriented along the [111] crystallographic direction, which is soft under tensile loading. Since single crystals of the [111] orientation are hard under compression it is also demonstrated that under compression the martensite in textured polycrystalline NiTi evolves relatively slower.  相似文献   

10.
A model of deformation of shape memory alloys (SMA) under nonmonotone loading is proposed. The model takes into account the fact that there is no strain hardening in the process of accumulation of the first phase transformation strains and describes both the usual hardening and the cross-hardening observed in martensite inelasticity experiments. Several examples illustrate the process of solving the model one-dimensional deformation problem with a given law of variation of the stress and the phase composition parameter and the problem on the direct transformation that occurs when cooling an SMA rod subjected to a constant bending moment.  相似文献   

11.
Here, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method. The governing equations are derived based on variational principle considering thermo-mechanical equilibrium and the spatial distribution of the nonlocal volume fraction of martensite during transformation. The nonlocal volume fraction of martensite is defined as a weighted average of the local volume fraction of martensite over a domain characterized by an internal length parameter. The local version of the thermo-mechanical behavior model derived from micromechanics considers the local volume fraction of martensite and the mean transformation strain. A 4-noded quadrilateral plane stress element with three degrees of freedom per node accounting for in-plane displacements and the nonlocal volume fraction of martensite is developed. Numerical simulations are conducted to bring out the influence of material and geometrical heterogeneities (perturbations/defects) on the localization and propagation of phase transformation in SMA thin structures. Also, a sensitivity analysis of the material response due to the localization and the other related model parameters is carried out. The detailed investigation done here clearly shows that the localization of phase transformation has significant effect on the response of shape memory alloys.  相似文献   

12.
Porous shape-memory alloys are usually brittle due to the presence of various nickel-titanium intermetallic compounds that are produced in the course of most commonly used synthesizing techniques. We consider here a porous NiTi shape-memory alloy (SMA), synthesized by spark-plasma sintering, that is ductile and displays full shape-memory effects over the entire appropriate range of strains. The porosity however is only 12% but the basic synthesizing technique has potential for producing shape-memory alloys with greater porosity that still are expected to display superelasticity and shape-memory effects. The current material has been characterized experimentally using quasi-static and dynamic tests at various initial temperatures, mostly within the superelastic strain range, but also into the plastic deformation regime of the stress-induced martensite phase. To obtain a relatively constant strain rate in the high strain-rate tests, a novel pulse-shaping technique is introduced. The results of the quasi-static experiments are compared with the predictions by a model that can be used to calculate the stress-strain response of porous NiTi shape-memory alloys during the austenite-to-martensite and reverse phase transformations in uniaxial quasi-static loading and unloading at constant temperatures. In the austenite-to-martensite transformation, the porous shape-memory alloy is modeled as a three-phase composite with the parent phase (austenite) as the matrix and the product phase (martensite) and the voids as the embedded inclusions, reversing the roles of austenite and martensite during the reverse transformation from fully martensite to fully austenite phase. The criterion of the stress-induced martensitic transformation and its reversal is based on equilibrium thermodynamics, balancing the thermodynamic driving force for the phase transformation, associated with the reduction of Gibbs’ free energy, with the resistive force corresponding to the required energy to create new interface surfaces and to overcome the energy barriers posed by various microstructural obstacles. The change in Gibbs’ free energy that produces the driving thermodynamic force for phase transformation is assumed to be due to the reduction of mechanical potential energy corresponding to the applied stress, and the reduction of the chemical energy corresponding to the imposed temperature. The energy required to overcome the resistance imposed by various nano- and subnano-scale defects and like barriers, is modeled empirically, involving three constitutive constants that are then fixed based on the experimental data. Reasonably good correlation is obtained between the experimental and model predictions.  相似文献   

13.
Size effects on the martensitic phase transformation of NiTi nanograins   总被引:1,自引:0,他引:1  
The analysis of nanocrystalline NiTi by transmission electron microscopy (TEM) shows that the martensitic transformation proceeds by the formation of atomic-scale twins. Grains of a size less than about 50 nm do not transform to martensite even upon large undercooling. A systematic investigation of these phenomena was carried out elucidating the influence of the grain size on the energy barrier of the transformation. Based on the experiment, nanograins were modeled as spherical inclusions containing (0 0 1) compound twinned martensite. Decomposition of the transformation strains of the inclusions into a shear eigenstrain and a normal eigenstrain facilitates the analytical calculation of shear and normal strain energies in dependence of grain size, twin layer width and elastic properties. Stresses were computed analytically for special cases, otherwise numerically. The shear stresses that alternate from twin layer to twin layer are concentrated at the grain boundaries causing a contribution to the strain energy scaling with the surface area of the inclusion, whereas the strain energy induced by the normal components of the transformation strain and the temperature dependent chemical free energy scale with the volume of the inclusion. In the nanograins these different energy contributions were calculated which allow to predict a critical grain size below which the martensitic transformation becomes unlikely. Finally, the experimental result of the atomic-scale twinning can be explained by analytical calculations that account for the transformation-opposing contributions of the shear strain and the twin boundary energy of the twin-banded morphology of martensitic nanograins.  相似文献   

14.
本文对NiTi形状记忆合金I型裂纹尖端热力耦合行为进行了数值仿真分析和实验验证。建立了包含相变和热力耦合的本构模型,通过有限元计算得到了裂纹尖端附近的纵向应变、马氏体体积分数和温度场分布,依据马氏体相变情况对裂纹尖端有效应力强度因子进行了修正,揭示了加载速率对形状记忆合金裂纹尖端有效应力强度影子的影响规律。参数研究表明,随着加载频率的增加,裂纹尖端附近温度逐渐升高,马氏体相变区域逐渐缩小,有效应力强度因子呈下降趋势,形状记忆合金表现出增韧效应,有助于减缓裂纹扩展。本研究结果对于揭示热力耦合作用下超弹性形状记忆合金疲劳裂纹扩展规律具有重要参考意义。  相似文献   

15.
Pseudoelasticity and the shape memory effect (SME) due to martensitic transformation and reorientation of polycrystalline shape memory alloy (SMA) materials are modeled using a free energy function and a dissipation potential. Three different cases are considered, based on the number of internal state variables in the free energy: (1) austenite plus a variable number of martensite variants; (2) austenite plus two types of martensite; and (3) austenite and one type of martensite. Each model accounts for three-dimensional simultaneous transformation and reorientation. The single-martensite model was chosen for detailed study because of its simplicity and its ease of experimental verification. Closed form equations are derived for the damping capacity and the actuator efficiency of converting heat into work. The first law of thermodynamics is used to demonstrate that significantly more work is required to complete the adiabatic transformation than the isothermal transformation. Also, as the hardening due to the austenite/martensite misfit stresses approaches zero, the transformation approaches the isothermal, infinite specific heat conditions of a first-order transformation. In a second paper, the single-martensite model is used in a mesomechanical derivation of the constitutive equations of an active composite with an SMA phase.  相似文献   

16.
R. P. Dhote  R. N. V. Melnik  J. Zu 《Meccanica》2014,49(7):1561-1575
The objective of this paper is to provide new insight into the dynamic thermo-mechanical properties of shape memory alloy (SMA) nanowires subjected to multi-axial loadings. The phase-field model with Ginzburg–Landau energy, having appropriate strain based order parameter and strain gradient energy contributions, is used to study the martensitic transformations in the representative 2D square-to-rectangular phase transformations for FePd SMA nanowires. The microstructure and mechanical behavior of martensitic transformations in SMA nanostructures have been studied extensively in the literature for uniaxial loading, usually under isothermal assumptions. The developed model describes the martensitic transformations in SMAs based on the equations for momentum and energy with bi-directional coupling via strain, strain rate and temperature. These governing equations of the thermo-mechanical model are numerically solved simultaneously for different external loadings starting with the evolved twinned and austenitic phases. We observed a strong influence of multi-axial loading on dynamic thermo-mechanical properties of SMA nanowires. Notably, the multi-axial loadings are quite distinct as compared to the uniaxial loading case, and the particular axial stress level is reached at a lower strain. The SMA behaviors predicted by the model are in qualitative agreements with experimental and numerical results published in the literature. The new results reported here on the nanowire response to multi-axial loadings provide new physical insight into underlying phenomena and are important, for example, in developing better SMA-based MEMS and NEMS devices  相似文献   

17.
In this work, a nonlocal phenomenological behavior model is proposed in order to describe the localization and propagation of stress-induced martensite transformation in shape memory alloy (SMA) wires and thin films. It is a nonlocal extension of an existing local model that was derived from a micromechanical-inspired Gibbs free energy expression. The proposed model uses, besides the local field of the internal variable, namely the martensite volume fraction, a nonlocal counterpart. This latter acts as an additional degree of freedom, which is determined by solving an additional partial differential equation (PDE), derived so as to be equivalent to the integral definition of a nonlocal quantity. This PDE involves an internal length parameter, dictating the global scale at which the nonlocal interactions of the underlying micromechanisms are manifested during phase transformation. Moreover, to account for the unstable softening behavior, the transformation yield force parameter is considered as a gradually decreasing function of the martensite fraction. Possible material and geometric imperfections that are responsible for localization initiation are also considered in this analysis. The obtained constitutive equations are implemented in the Abaqus® finite element code in one and two dimensions. This requires the development of specific finite elements having the nonlocal volume fraction variable as an additional degree of freedom. This implementation is achieved through the UEL user’s subroutine. The effect of martensitic localization on the superelastic global behavior of SMA wire and holed thin plate, subjected to tension loading, is analyzed. Numerical results show that the developed tool correctly captures the commonly observed unstable superelastic behavior characterized by nucleation and propagation of martensitic phase. In particular, they show the influence of the internal length parameter, appearing in the nonlocal model, on the size of the localization area and the stress nucleation peak.  相似文献   

18.
A new crystal plasticity model incorporating the mechanically induced martensitic transformation in metastable austenitic steel has been formulated and implemented into the finite element analysis. The kinetics of martensite transformation is modeled by taking into consideration of a nucleation-controlled phenomenon, where each potential martensitic variant based on Kurdjumov–Sachs (KS) relationship has different nucleation probability as a function of the interaction energy between externally applied stress and lattice deformation. Therefore, the transformed volume fractions are determined following selective variants given by the crystallographic orientation of austenitic matrix and applied stress in the frame of the crystal plasticity finite element. The developed finite element program is capable of considering the effect of volume change by the Bain deformation and the lattice-invariant shear during the martensitic transformation by effectively modifying the evolution of plastic deformation gradient of the conventional rate-dependent crystal plasticity finite element. The validation of the proposed model has been carried out by comparing with the experimentally measured data under simple loading conditions. Good agreements with the measurements for the stress–strain responses, transformed martensitic volume fractions and the influence of strain rate on the deformation behavior will enable the model to be promising for the future applications to the real forming process of the TRIP aided steel.  相似文献   

19.
Shape Memory Alloys (SMAs) undergo an austenite–martensite solid–solid phase transformation which confers its pseudo-elastic and shape memory behaviours. Phase transformation can be induced either by stress or temperature changes. That indicates a strong thermo-mechanical coupling. Tensile test is one of the most popular mechanical test, allowing an easy observation of this coupling: transformation bands appear and enlarge giving rise to a large amount of heat and strain localisation. We demonstrate that the number of transformation bands is strongly associated with the strain rate. Recent progress in full field measurement techniques have provided accurate observations and consequently a better understanding of strain and heat generation and diffusion in SMAs. These experiments bring us to suggest the creation of a new one-dimensional thermomechanical modelling of the pseudo-elastic behaviour. It is used to simulate the heat rise, strain localisation and thermal evolution of the NiTi SMA sample submitted to tensile loading.  相似文献   

20.
The notion of functionally graded materials (FGM) covers all domains of discrete and smooth gradation of material microstructure designed in order to obtain macroscopic features suitable for a given application. A special class of multi-phase materials with graded microstructure can be obtained at cryogenic temperatures as a result of smooth transition from the parent phase to the secondary phase. The required continuously graded material features are obtained at low temperatures via the mechanism of controlled strain induced phase transformation from the purely austenitic to the martensitic lattice (γ  α′). Several families of ductile materials are known to behave in a metastable way when strained at very low temperatures. Among them the austenitic stainless steels are extensively used to construct components of the superconducting magnets, cryogenic transfer lines and other structural members loaded in cryogenic conditions. The constitutive model used to describe mathematically the plastic strain induced phase transformation at low temperatures involves strain hardening where two fundamental effects play an important role: interaction of dislocations with the martensite inclusions and increase in material tangent stiffness due to the mixture of harder martensite with softer austenite. The interaction of dislocations with the martensite inclusions is reflected by the hardening modulus that depends on the volume fraction of martensite. Here, a linear approximation, based on the micro-mechanics analysis, is used. On the other hand, evaluation of the material tangent stiffness of two-phase continuum is based on the classical homogenization scheme and takes into account the local tangent moduli of the components, as postulated by Hill [Hill, R., 1965. A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222]. In the present paper, the Mori–Tanaka homogenisation scheme is applied. Both effects contribute to strong nonlinear hardening that occurs as soon as the phase transformation process begins. The material model is suitable for a wide range of temperatures, however the best results are obtained at very low temperatures, where the linearized kinetic law of phase transformation is valid [Garion, C., Skoczeń B., 2002. Modeling of plastic strain induced martensitic transformation for cryogenic applications. J. Appl. Mech. 69 (6), 755–762]. As the application field the structural members in the form of rods (cylinders) of circular cross-section, used as parts of the carrying structures, are analyzed. The required graded microstructure of the material is obtained by imposing torsion at cryogenic temperatures. Both the intensity of the phase transformation and the depth of the transformed zone is obtained by suitable kinematic control (angle of twist). The closed form solutions for the stress state and torque as a function of the angle of twist are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号