首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of high- Tcsuperconductors have clarified new aspects of tunneling spectroscopy. The unconventional pairing states, i.e. d-wave symmetry in these materials have been established through various measurements. Differently from isotropic s-wave superconductors, d-wave pairing states have an internal phase of the pair potential. The internal phase modifies the surface states due to the interference effect of the quasiparticles. Along these lines, a novel formula of tunneling spectroscopy has been presented that fully takes into account of the anisotropy of the pair potential. The most essential difference of this formula from conventional ones is that it suggests the phase-sensitive capability of tunneling spectroscopy. The formula suggests that the symmetry of the pair potential is determined by the orientational dependence measurements of tunneling spectroscopy. Along these lines, several experiments have been performed on high-Tc superconductors. The observation of the zero-bias conductance peaks (ZBCP) on Y Ba2Cu3O7 − δstrongly suggests the dx2y2-wave pairing states of hole-doped high-Tc superconductors. On the other hand, the absence of ZBCP on (electron-doped)Nd1.85Ce0.15CuO4 − δindicates that the pair potential of this material is a nodeless state. In this paper, recent developments of tunneling spectroscopy for anisotropic superconductors are reviewed both on theoretical and experimental aspects.  相似文献   

2.
A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re = rare-earth element) and AFe2As2 (A = alkaline-earth metal) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe2As2. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron–phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the T-dependent mid-infrared peak at 0.6–0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.  相似文献   

3.
Tremendous excitement has followed the recent discovery of superconductivity up to Tc = 56 K in iron–arsenic based materials (pnictides). This discovery breaks the monopoly on high-Tc superconductivity held by copper-oxides (cuprates) for over two decades and renews hope that high-Tc superconductivity may finally be theoretically understood and widely applied.Since scanning tunneling microscopy (STM) and spectroscopy (STS) have been key tools in the investigation and understanding of both conventional and unconventional superconductivity, these techniques are also applied to the pnictides. While the field is still in its early stages, several important achievements by STM and STS have been reported on the pnictides. In this paper, we will review their contribution towards an understanding of superconductivity in this new class of materials.  相似文献   

4.
Low-energy spin excitations have been studied on polycrystalline LaFeAsO1?xFx samples by inelastic neutron scattering. The Q-integrated dynamical spin susceptibility χ″(ω) of the superconducting samples is found to be comparable to that of the magnetically ordered parent sample. On the other hand, χ″(ω) almost vanishes at x = 0.158, where the superconducting transition temperature Tc is suppressed to 7 K. In addition, χ″(ω) in optimally doped LaFeAsO0.918F0.082 with Tc = 29 K exhibits a spin resonance mode. The peak energy, Eres, when scaled by kBTc is similar to the value of about 4.7 reported in other high-Tc iron-based superconductors. This result suggests that there is intimate relationship between the dynamical spin susceptibility and high-Tc superconductivity in iron-based superconductors, and is consistent with a nesting condition between Fermi surfaces at the Γ and M points.  相似文献   

5.
Inelastic neutron scattering has been performed on powder sample of an iron-based superconductor BaFe2(As0.65P0.35)2 with superconducting transition temperature (Tc) = 30 K, whose superconducting (SC) order parameter is expected to have line node. In the normal state, constant-E scan of dynamical structure factor, S(Q, E), exhibits a peak structure centered at momentum transfer Q  1.20 Å?1, corresponding to antiferromagnetic wave vector. Below Tc, the redistribution of the magnetic spectral weight takes place, resulting in the formation of a peak at E  12 meV and a gap below 6 meV. The enhanced magnetic peak structure is ascribed to the spin resonance mode, evidencing sign change in the SC order parameter similar to other iron-based high-Tc superconductors. It suggests that fully-gapped s± symmetry dominates in this superconductor, which gives rise to high-Tc (=30 K) despite the nodal symmetry.  相似文献   

6.
The superconducting R1.4Ce0.6RuSr2Cu2O10  δ(R = Sm, Eu and Gd) withTc  28, 32 and 42 K are also magnetically ordered atTN  220, 122 and 180 K, respectively, thus,TN  Tc. This is in contrast to intermetallic magnetic superconductors (such as RNi2B2C) in whichTc  TN. Magnetic susceptibility and Mossbauer spectroscopy show that superconductivity is confined to the CuO2planes, whereas magnetism is due to the Ru sublattice. Irreversibility phenomena and magnetic anomalies, observed at low magnetic fields originate from antisymmetric exchange coupling of the Dzyaloshinsky–Moria type, and from spin reorientation of the Ru moments. The shielding fraction is about 100%, supporting the conclusion that the materials consist of a single phase, manifesting both magnetism and superconductivity at once.  相似文献   

7.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

8.
We discuss the novel superconducting characteristics and unusual normal-state properties of iron (Fe)-based pnictide superconductors REFeAsO1?y (RE = La, Pr, Nd) and Ba0.6K0.4Fe2As2 (Tc = 38 K) by means of 57FeNMR and 75AsNQR/NMR. In the superconducting state of LaFeAsO0.7 (Tc = 28 K), the spin component of the 57Fe-Knight shift decreases to almost zero at low temperatures, which provide firm evidence of the superconducting state formed by spin-singlet Cooper pairing. The nuclear spin–lattice relaxation rates (1/T1) in LaFeAsO0.7 and Ba0.6K0.4Fe2As2 exhibit a T3-like dependence without a coherence peak just below Tc, indicating that an unconventional superconducting state is commonly realized in these Fe-based pnictide compounds. All these events below Tc are consistently argued in terms of an extended s±-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, 1/T1T decreases remarkably upon cooling for both the Fe and As sites of LaFeAsO0.7. In contrast, it gradually increases upon cooling in Ba0.6K0.4Fe2As2. Despite the similarity between the superconducting properties of these compounds, a crucial difference was observed in their normal-state properties depending on whether electrons or holes are doped into the FeAs layers. These results may provide some hint to address a possible mechanism of Fe-based pnictide superconductors.  相似文献   

9.
We have performed an ab initio band structure calculation for the new high-Tc related iron-pnictide compounds LaFeXO (X = P, As), BaFe2As2, CaFe2As2 and LiFeAs (X = P, As). We found that LaFeXO and CaFe2As2 have many similarities in their band structures, which is expected by an ionic model. We found that the degree of distortion of FeAs4 tetrahedra in LaFeAsO considerably changes the slope of the density of states near the Fermi level, and this result may explain why REFeAsO (RE = Nd, Sm, …) have higher Tc than LaFeAsO when electrons are doped. For all the above compounds, the density of states at the Fermi level decreases when X atoms approaches to the Fe–Fe plane, which means that the hybridization between Fe and X orbitals considerably expands the Fe d-bands.  相似文献   

10.
We propose a new approach of smearing origins of a zero-bias conductance peak (ZBCP) in high-Tc superconductor tunnel junctions through the analysis based on the circuit theory for a d-wave pairing symmetry. The circuit theory has been recently developed from conventional superconductors to unconventional superconductors. The ZBCP frequently appears in line shapes for this theory, in which the total resistance was constructed by taking account of the effects between a d-wave superconductor and a diffusive normal metal (DN) at a junction interface, including the midgap Andreev resonant states (MARS), the coherent Andreev reflection (CAR) and the proximity effect. Therefore, we have analyzed experimental spectra with the ZBCP of Ag-SiO-Bi2Sr2CaCu2O8+δ (Bi-2212) planar tunnel junctions for the {110}-oriented direction by using a simplified formula of the circuit theory for d-wave superconductors. The fitting results reveal that the spectral features of the ZBCP are well explained by the circuit theory not only excluding the Dynes's broadening factor but also considering only the MARS and the DN resistance. Thus, the ZBCP behaviors are understood to be consistent with those of recent studies on the circuit theory extended to the systems containing d-wave superconductor tunnel junctions.  相似文献   

11.
《Current Applied Physics》2015,15(5):617-621
Measured is the transverse electrical resistance of YBa2Cu3O7−δ single crystals with different oxygen deficiency values (δ) in the temperature range Tc  300 K. The experimental data are approximated by an empiric expression accounting for the fluctuation conductivity near Tc and the semiconductor-like resistance regime. Our analysis of the concentration dependences of the fitting parameters, in particular, reveals that the resistance temperature dependence is largely affected by the sample's non-homogeneity. The latter, in turn, causes a Tc anisotropy and variable-range hopping conductivity between different phases. The deduced maximal values of the basal-plane coherence length, ξxy(0), are comparable with those for low-temperature superconductors.  相似文献   

12.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

13.
Scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements were performed on Bi2SrCaCuO6 whose superconducting transition temperature Tc is about 80 K. The superconducting gap obtained by the STS measurements was found to be about 40 meV. This value is close to that of optimally doped Bi2Sr2CaCu2O8 which has similar Tc. The observed spatial inhomogeneity of the gap value was much smaller than that of Bi2Sr2CuO6.  相似文献   

14.
A study of photoinduced high-Tc superconductivity is presented by canonical two-band BCS model containing Fermi surfaces of p and d holes. We have obtained two superconducting gaps from this model. Studies of chemical potential and hole concentration dependences on critical temperature (Tc) are made. The enhancement of Tc is found due to doping.The study of specific heat and density of states based on this model is also presented. The dependence Tc(nh) for the system YBa2Cu3O7?x (1 2 3) obtained theoretically agrees with the available experimental data.  相似文献   

15.
The existence of two temperatures: Tp-Cooper pairing and Tc-Bose–Einstein condensation in high temperature superconductors has been stipulated in a lightly potassium-doped C60 by Magnetically Modulated Microwave Absorption. This doping level corresponds to the carrier density greater than the critical one: x>x1. In case of rubidium lightly doped C60, where the carrier density x was smaller than the critical one: x<x1, anomalous EPR temperature dependence was observed. The characteristic temperature of bound electron pair formation Tp≈65 K and the energy gap 2Δ/k=30 K were estimated from the temperature dependence of the EPR signal intensity in non-superconducting state. These results suggest that the liquid fermions–liquid bosons transition can be observed as the opening of the spin gap at temperature Tp postulated in Micnas–Ranninger–Robaszkiewicz theory.  相似文献   

16.
《Solid State Communications》2003,125(7-8):439-444
Based on the Hubbard model in the framework of non-phonon kinematical mechanism and taking into account the discreetness of an electronic energy spectrum, the superconducting critical temperature of a mesoscopic high-Tc sphere is analyzed as a function of doping and as a function of particle's radius. The critical temperature Tc is found to be an oscillating function of the radius of a particle. The size-dependent doping regime is revealed in high-Tc nanoparticles. Our analysis shows that each oscillation in Tc corresponds to the increase in a number of the energy levels in the sphere by 1. The amplitude of oscillations of Tc increases with decreasing R and can reach a value of 6 K for nanoparticles with sizes about 25 nm, in good agreement with experimental studies of YBa2Cu3O7−δ nanoparticles.  相似文献   

17.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

18.
Recently, there has been tremendous interest on a tunneling feature called zero bias conductance peak (ZBCP) commonly found in high Tcsuperconductor tunnel junctions. The interest stemmed from the feature’s root in the d-wave symmetry of high Tcsuperconductors. In this paper we will review results of our study on ZBCP within a Pb/Bi2Sr2CaCu2O8(BSCCO) tunneling junction. This allows us to investigate the intricate interactions between s- and d-wave superconductivity. The ZBCP indeed demonstrates interesting properties when Pb becomes superconducting. We attribute these results to the suppression of the d-wave phase on the surface of BSCCO by the s-wave superconductivity from Pb through a proximity effect. We will also report some recent results on the magnetic field dependence of the ZBCP.  相似文献   

19.
There is growing evidence that the unconventional spatial inhomogeneities in the doped high-TcTc superconductors are accompanied by the pairing of electrons, subsequent phase transitions and condensation into coherent states. We show that such pairing states can be obtained from phase separation instabilities near level crossings. Conditions for coherent pairing instabilities are examined using exact diagonalization of Hubbard-like pyramid structures under variation of coupling and interaction strengths. We also evaluate the behavior of the energy charge gap in the vicinity of level crossings using a parametrization of coupling to the apical site to represent out-of-plane effects. These results provide a simple microscopic explanation of (correlation induced) supermodulation of the coherent pairing gap observed in scanning tunneling microscopy measurements at atomic scale in Bi2Sr2CaCu2O8 + δ.  相似文献   

20.
To understand the effect of Y2BaCuO5 (Y211)/YBa2Cu3O7?y (Y123) interfaces on the oxygen diffusion in single grain YBa2Cu3O7?y superconductors, single grain Y123 superconductors with 0.05 and 0.3 moles of Y2O3 additions were fabricated by a top-seeded melt growth (TSMG) process. Y123 compacts with Y2O3 additions were subjected to melt growth heating cycles with a cooling rate of 1 °C/h through a peritectic temperature (1015 °C) and then annealed at 450 °C for 200 h in flowing oxygen. The superconducting temperature (Tc) and critical current density (Jc) were estimated for the three different regions (top surface (s), intermediate (i) and center (c)) of samples. The amount of Y211/Y123 interface area in single grain Y123 superconductors was successfully controlled by Y2O3 additions. The Tc values of s regions were higher than those of i and c regions, which indicates the presence of more oxygen at the sample surfaces. In addition, the Tc values of i and c regions of the Y123 sample with 0.3 mole Y2O3 addition were higher than those of the same regions of the Y123 sample with 0.05 mole Y2O3 addition due to the promoted oxygen diffusion through Y211/Y123 interfaces and other related defects. In spite of the promoted oxygen diffusion by Y2O3 addition, the large Tc difference among the regions still existed, which suggests sluggish oxygen diffusion into single Y123 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号