首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system.  相似文献   

2.
The effective Coulomb interaction between sources with SU(2) color charge is reinvestigated at the one-loop order of perturbation theory. This quantity is shown to be formally identical with the effective Coulomb interaction between electric charges in the QED of massless, charged, vector fields with anomalous magnetic moments. This correspondence allows the one-loop Yang-Mills charge renormalization factor to be deduced from a knowledge of the size and origins of this quantity in massless scalar and spinor QED. Careful consideration of the analogy with QED suggests a mechanism for asymptotic freedom in the Feynman gauge.  相似文献   

3.
Toward the construction of the gauge theory on a lattice without species doubling, we formulate the U(1) gauge-coupled Dirac equation on a finite element in (d + 1)-dimensional space-time. For massless (QED)2, we derive the vector current conservation and the axial anomaly. The reproduction of the axial anomaly indicates the resolution of the doubling problem.  相似文献   

4.
We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb, and spatial axial gauges to what we call “common form,” in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.  相似文献   

5.
Through an analysis of quantum field theory with “fundamental length” l[1–10], a new concept of gauge vector field is determined. The electromagnetic field is considered in detail. The new electromagnetic potential turns out to be a 5-vector associated with the De Sitter group SO(4,1). The extra fifth component, called τ-photon, similar to the scalar and longitudinal photons, does not correspond to an independent dynamical degree of freedom. Gauge-invariant equations of motion for all components of the electromagnetic 5-potential are found. Though the new gauge group remains Abelian, it is nevertheless larger than the conventional gauge group. In particular, the new gauge transformations intrinsically depend on the fundamental length l. Therefore one can consider them as a base for modification of QED at small distances (?l) in a profound way. The underlying physics becomes much richer due to the appearance of new interactions mediated by the τ-photons [14].  相似文献   

6.
We extend a constrained version of implicit regularization (CIR) beyond one-loop order for gauge field theories. In this framework, the ultraviolet content of the model is displayed in terms of momentum loop integrals order by order in perturbation theory for any Feynman diagram, while the Ward–Slavnov–Taylor identities are controlled by finite surface terms. To illustrate, we apply CIR to massless abelian gauge field theories (scalar and spinorial QED) to two-loop order and calculate the two-loop beta-function of spinorial QED. PACS  11.10.Gh; 11.15.Bt; 11.15.-q  相似文献   

7.
The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian.  相似文献   

8.
We present finite temperature (T) extension of the (2+1)-dimensional QED (QED3) theory of under-doped cuprates. The theory describes nodal quasiparticles whose interactions with quantum proliferated hc/2e vortex-antivortex pairs are represented by an emergent U(1) gauge field. Finite T introduces a scale beyond which the spatial fluctuations of vorticity are suppressed. As a result, the spin susceptibility of the pseudogap state is bounded by T2 at low T and crosses over to approximately T at higher T, while the low-T specific heat scales as T2, reflecting the thermodynamics of QED3. The Wilson ratio vanishes as T-->0; the pseudogap state is a "thermal (semi)metal" but a "spin-charge dielectric." This non-Fermi liquid behavior originates from two general principles: spin correlations induced by "gauge" interactions of quasiparticles and fluctuating vortices and the "relativistic" scaling of the T=0 fixed point.  相似文献   

9.
We discuss the formulation of the prototype gauge field theory, QED, in the context of two-particle-irreducible (2PI) functional techniques with particular emphasis on the issues of renormalization and gauge symmetry. We show how to renormalize all n-point vertex functions of the (gauge-fixed) theory at any approximation order in the 2PI loop-expansion by properly adjusting a finite set of local counterterms consistent with the underlying gauge symmetry. The paper is divided in three parts: a self-contained presentation of the main results and their possible implementation for practical applications; a detailed analysis of ultraviolet divergences and their removal; a number of appendices collecting technical details.  相似文献   

10.
Proof is given for gauge independence of the (Belinfante's) symmetric energy-momentum tensor in QED. Under the covariant LSZ-formalism it is shown that expectation values, supplemented with physical state conditions, of the energy-momentum tensor are gauge independent to all orders of the purturbation theory (the loop expansion). A study is also made, in terms of the gauge invariant operators of electron (known as the Dirac's or Steinmann's electron) and photon, in expectation of gauge invariant result without any restriction. It is, however, shown that singling out gauge invariant quantities is merely synonymous to fixing a gauge, then there needs again a use of the asymptotic condition to obtain gauge independent results.  相似文献   

11.
We formulate a perturbation theory in terms of superfields for Lagrangian field theories which are expressable by chiral or general scalar superfields. Especially we consider the generalized QED model of Wess and Zumino where an additional local gauge symmetry is present. Our calculations are manifestly covariant with respect to supersymmetry and local gauge transformations.  相似文献   

12.
The problem of the gauge dependence of the fermion mass in the Maxwell-Chern-Simons QED is revisited. Using Proca mass term as an intermediate infrared regulator we are demonstrating gauge-invariance of the fermion mass shell in QED in all orders of the perturbation theory.  相似文献   

13.
The action principle is used to derive, by an entirely algebraic approach, gauge transformations of the full vacuum-to-vacuum transition amplitude (generating functional) from the Coulomb gauge to arbitrary covariant gauges and in turn to the celebrated Fock–Schwinger (FS) gauge for the Abelian (QED) gauge theory without recourse to path integrals or to commutation rules and without making use of delta functionals. The interest in the FS gauge, in particular, is that it leads to Faddeev–Popov ghosts-free non-Abelian gauge theories. This method is expected to be applicable to non-Abelian gauge theories including supersymmetric ones.  相似文献   

14.
We assume the existence of a conserved current which generates locally gauge transformations of first kind. We are working in a local quantum Field Theory, where the fields are defined on a vector space where indefinite metric is allowed. We show that the Maxwell equations are not consistent with the above assumptions and the vectors obtained by applying local charged operators on the vacuum cannot describe physical states. Moreover we show that, if charged fields have non-trivial expectation value on the physical states, the vector space must contain vectors with negative norm. We discuss the relation between the local formulation of QED and a formulation in terms of physical states. As an example we study the transition from Gupta-Bleuler free QED to the Coulomb-gauge formulation.  相似文献   

15.
We demonstrate that massless QED in three dimensions contains endemic infrared divergences. It is argued that these divergences do not affect observables; furthermore, it is possible to choose a gauge that renders the theory finite.  相似文献   

16.
Four-fermion processes with a particle lost in the beam pipe are studied at LEP to perform precision tests of the electroweak theory. Leading higher-order QED corrections to such processes are analyzed within the framework of the structure function (SF) approach. The energy scale entering the QED SF is determined by inspection of the soft and collinear limit of the radiative corrections to the four-fermion final states, paying particular attention to the process of single-W production. Numerical predictions are shown in realistic situations for LEP experiments and compared with existing results. A Monte Carlo event generator, including exact tree-level matrix elements, vacuum polarization, higher-order leading QED corrections and anomalous trilinear gauge couplings, is presented. Received: 5 October 2000 / Published online: 11 May 2001  相似文献   

17.
As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron’s anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation.  相似文献   

18.
19.
We are interested in deriving various full Green functions through general Ward–Takahashi identities (WTIs) for quantized field theories. With the help of a postulate of gauge group parameter, the general local gauge transformation laws preserving the gauge-invariance of the generating functional itself of QED model have been established successfully. By using path-integral technique, the various WTIs with resulting anomaly terms are derived under the gauge transformations. The arising of Jacobian factor from the integration measure gives a viable possibility to express full Green function. As a consequence, the complete expressions of the full vector, the full axial-vector, the full tensor vertex functions and so on are presented respectively by solving the complete set of the WTIs in the momentum space without considering the constraint imposing any Ansatz. In addition, anomaly function also provides an effective means to judge the divergence of variant coupling currents on fields.  相似文献   

20.
In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号