首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
差分吸收光谱(DOAS)法是一种有效的监测大气污染气体浓度的光学遥感方法,不仅有好的时间分辨率,而且测量灵敏度也很高。但是由于遥测系统处于复杂的大气环境中,各种干扰因素以及恶劣的气候条件,都会对系统产生影响。针对现有实时、在线监测差分吸收光谱系统中存在的不足,作者提出了一种基于改进Elman网络的实时预测模型。利用逐步回归筛选预测因子,不仅降低了预测网络的复杂程度,而且增强了系统的预测实时性。利用带自适应学习率的动态BP算法对改进的Elman网络进行训练,使预测系统能更好地辨识要预测的差分吸收光谱系统,该模型能较准确地对DOAS系统监测污染物数据进行实时跟踪监控,一定程度上弥补了遥测系统的不足。  相似文献   

2.
差分光学吸收光谱学技术(Differential Optical Absorption Spectroscopy,DOAS)是近年来发展起来的一种实时检测大气中痕量气体浓度的有效方法,它采用线性最小二乘拟合方法,用痕量气体标准差分吸收截面对测量得到的差分吸收光谱进行拟合,得出大气中痕量气体的浓度。通过介绍DOAS方法的测量原理,在线监测系统的构成,气体浓度的反演方法,测量结果及讨论等内容,说明它在空气质量监测方面的优越性。  相似文献   

3.
差分吸收光谱法测量大气污染的浓度反演方法研究   总被引:20,自引:0,他引:20       下载免费PDF全文
周斌  刘文清  齐峰  李振壁  崔延军 《物理学报》2001,50(9):1818-1823
介绍了差分光学吸收光谱法(DOAS)测量大气污染气体浓度的基本原理,描述了对测量光谱所作的一些必要处理,对最小二乘法作了简单介绍,并将它用在DOAS方法中的浓度反演中,通过与当地监测站的数据进行对比,证明了最小二乘法非常适用于DOAS方法中的浓度反演. 关键词: 差分光学吸收光谱法 光谱处理 最小二乘法 环境监测  相似文献   

4.
过采样∑-△A/D技术在差分吸收光谱系统中的应用   总被引:4,自引:4,他引:0  
差分光学吸收光谱法(DOAS)已经成为测量大气中微量气体成分含量常用的方法,该方法基于最小二乘原理,利用测量的大气光谱的差分吸收光学密度与标准的吸收截面进行拟合,确定待测气体的浓度.其测量精度不仅取决于光谱测量精度、仪器本身的噪声以及测量波段内其他气体的干扰等因素,还与痕量气体前期采集和处理有关.文章简介了差分吸收光谱法测量原理和仪器结构,提出过采样∑-△A/D技术,过采样技术与∑-△调制器的噪声整形技术结合,可对量化噪声进行双重抑制,从而提高待测波段内的信噪比,实验结果表明提高了DOAS系统的测量精度.  相似文献   

5.
差分光学吸收光谱法(DOAS)已经成为测量大气中微量气体成分含量常用的方法,该方法基于最小二乘原理,利用测量的大气光谱的差分吸收光学密度与标准的吸收截面进行拟合,确定待测气体的浓度。其测量精度不仅取决于光谱测量精度、仪器本身的噪声以及测量波段内其他气体的干扰等因素,还与痕量气体前期采集和处理有关。文章简介了差分吸收光谱法测量原理和仪器结构,提出过采样∑-ΔA/D技术,过采样技术与∑-Δ调制器的噪声整形技术结合,可对量化噪声进行双重抑制,从而提高待测波段内的信噪比,实验结果表明提高了DOAS系统的测量精度。  相似文献   

6.
基于小波变换的差分吸收光谱数据处理方法   总被引:6,自引:0,他引:6  
差分光学吸收光谱法(DOAS)已经成为测量大气中微量气体成分含量常用的方法,该方法是通过窄带分子的特征吸收波段来区分微量气体种类;并基于最小二乘原理,利用测量的大气光谱的差分吸收截面与标准的吸收截面进行拟合,确定待测气体的浓度。但在实际测量中由于系统噪声叠加在吸收光谱上,会影响测量精度。差分吸收光谱系统中惯用的方法采用多项式平滑滤波去除噪声,提出利用软阈值小波变换去噪,并对实验结果进行比较,发现软阈值小波去噪,可以提高差分吸收光谱系统的测量精度,降低差分吸收光谱系统的检测限。  相似文献   

7.
大气污染物垂直廓线扫描差分吸收光谱方法研究   总被引:3,自引:2,他引:1  
差分光学吸收光谱法(DOAS)已经成为测量大气痕量气体含量的常用方法,该方法灵敏度高,可同时监测多种大气痕量气体.提出了应用差分吸收光谱方法监测大气痕量气体垂直分布,结合放置数套角反射器的近地层高塔,研制出扫描长光程差分吸收光谱(扫描LP-DOAS)系统.应用此系统于2007年夏季对北京城市重要大气污染物NO2的垂直分布进行了外场监测,准确获得了NO2沿各光路的积分浓度,确定了系统在各光路的检测限和系统总的测量误差.基于垂直廓线模型,成功反演了NO2的垂直廓线和垂直梯度.研究结果表明扫描LP-DOAS技术监测城市大气近地层痕量气体垂直分布的可行性.  相似文献   

8.
差分吸收光谱法(DOAS)是一种高灵敏测量大气痕量气体成分含量的有效的光学遥感方法,该方法基于最小二乘拟合模型,利用获得的痕量气体的差分吸收光学密度与标准的吸收截面进行拟合,反演待测气体的浓度.建立了基于径向基(RBF)神经网络的痕量气体浓度反演的新模型,对网络的隐层参数采用改进最近邻聚类学习算法训练,对输出层权值的训练采用梯度下降算法,使得网络收敛快,能更好地实时、在线反演测量光谱.并针对DOAS技术的特点,把拟合残差输入网络集中训练,使得RBF网络在反演真实痕量气体吸收时,效果更佳.实验结果表明该新型反演方法提高了DOAS系统的反演精度,降低了DOAS系统的探测限.  相似文献   

9.
差分吸收光谱法监测NO2浓度技术研究   总被引:7,自引:0,他引:7  
差分吸收光谱(DOAS)是利用气体分子对光谱具有特殊吸收这一特性来测量气体浓度的一种测量技术.本文介绍了DOAS法的基本测量原理,分析了DOAS的数据处理方法,并用DOAS法进行了不同情况时NO2气体浓度测量的实验研究.  相似文献   

10.
差分吸收光谱技术监测大气气溶胶粒谱分布   总被引:6,自引:0,他引:6       下载免费PDF全文
介绍了利用双光路差分吸收光谱(DOAS)技术监测大气气溶胶并反演其粒谱分布的新方法.该方法解决了DOAS技术中光源绝对光强难以测量的难题,去除了由于光源自身波动造成的影响,在250—650nm范围内成功的反演出气溶胶的消光系数以及0.1—1.75μm谱段的粒谱分布.通过与光学粒子计数器的对比实验证实该方法的可行性. 关键词: 差分吸收光谱 双光路 气溶胶 粒谱分布  相似文献   

11.
大气气溶胶不仅对全球的气候变化产生重大影响,其本身也是一种污染物,另外它在许多污染气体的化学反应中起重要作用。因此,实时监测大气气溶胶已成为环境领域的重要研究方向。差分吸收光谱技术是一种基于痕量气体“指纹”特性反演其浓度的光学遥感方法,同时该方法也可用于大气气溶胶消光系数的测量。文章介绍了利用闪烁差分吸收光谱系统监测大气气溶胶粒谱分布的方法,重点阐述了基于蒙特卡罗方法的粒谱分布反演算法,监测结果通过与PM10、能见度及Angstrom波长指数的对比证实了该方法的可行性,为近地面大气气溶胶监测提供了新的手段,同时也扩展了差分吸收光谱技术的应用范围,该方法对大气化学的研究有着重要的意义。  相似文献   

12.
韩冬  陈良富  李莘莘  陶金花  苏林  邹铭敏  范萌 《物理学报》2013,62(10):109301-109301
利用被动差分吸收光谱算法反演水体上方尤其是海洋上方的大气痕量气体浓度时, 水体的振动拉曼散射导致对太阳光谱中夫琅禾费线的填充.若不考虑这种类似大气Ring效应的水Ring效应, 会直接影响反演精度. 参考OMI传感器对大气Ring效应校正的卷积算法, 针对痕量气体OClO的反演, 利用经过大气消光计算后的太阳 360–400 nm入射光谱和对应波段的水体后向振动拉曼散射系数,通过卷积差分计算,得到了差分水 Ring效应系数. 与Vasilkov模型计算得到的结果比较,二者的相关系数R 达到0.9665. 关键词: 水Ring效应 振动拉曼散射 卷积 被动差分吸收光谱算法  相似文献   

13.
差分吸收光谱(DOAS)法是利用气体分子窄带吸收特征来测量气体浓度的一种新型的光谱测量技术。本文分析了紫外差分吸收光谱(DOAS)法检测SO2数值处理上的问题,提出傅里叶变换滤波分析方法。本方法可有效减少各种干扰对SO2浓度计算的影响,特别是对与SO2有重叠差分吸收光谱但有不同频谱特性且未知气体的干扰有很好的效果。  相似文献   

14.
差分吸收光谱方法反演大气环境单环芳香烃有机物   总被引:3,自引:0,他引:3  
差分吸收光谱技术(differential optical absorption spectroscopy, DOAS)是利用气体分子在紫外-可见光谱范围的特征吸收来测量其浓度含量,如SO2,NO2,O3等。由于大气环境中的芳香烃有机物含量较低,并且其在紫外的特征吸收光谱与O2和O3分子的吸收谱相互重叠,交叉干扰,使得对芳香烃有机物的测量比较困难。文章利用自制的差分吸收光谱系统,采用与实际测量光程接近、经过插值的氧气分子吸收柱密度作为氧气分子吸收的参考光谱,通过最小二乘拟合去除其干扰,另外采用不同温度下的O3吸收截面作为参考光谱修正O3的温度效应,测量了大气环境中的苯、甲苯、二甲苯和苯酚,表明差分吸收光谱方法能满足大气环境中单环芳香烃的测量。  相似文献   

15.
齐锋  刘文清  周斌  李振壁  崔延军 《光学学报》2002,22(11):345-1349
差分光学吸收光谱法已经变成了测量大气中微量气体浓度常用的方法。微量气体的浓度通过对大气吸收光谱的分析得到。但在实际应用中,由于受到硬件条件的限制,使得每次分析的光谱带宽有限,造成分析的误差较大,结果不够稳定。这里提出了一种利用多层自适应线性(Madaline)人工神经网络对光谱进行扩展的方法,并对试验结果进行了比较,收到了良好的效果。  相似文献   

16.
在实际测量得到的气体吸收光谱中,发现大多数气体的吸收光谱具有明显的周期性,而傅里叶变换正是用来寻求信号的频率特征。在加窗的条件下,通过对不同气体的吸收光谱进行傅里叶变换,来寻求光谱信号对应的特征频率。在数据分析过程中,发现这样一个规律:在气体吸收光谱经傅里叶变换后的频谱图中,其对应特征频率的幅值与所测的气体浓度成明显的线性对应关系。因此,提出一种新的差分吸收光谱浓度解析方法,即利用气体吸收光谱傅里叶变换后其对应特征频率的幅值与浓度的关系,建立一种浓度反演计算的线性关系式,从而由气体吸收光谱傅里叶变换后特征频率的幅值直接求出气体的浓度。该方法完全摆脱了差分吸收光谱技术的理论基础,大大减少了光谱分析和气体浓度反演计算的过程,是一种值得进一步去探究的光谱分析方法。  相似文献   

17.
差分吸收光谱技术(differential optical absorption spectroscopy, DOAS)是利用气体分子在紫外-可见光谱范围的特征吸收来测量其浓度含量。被动DOAS以天顶太阳散射光为光源通过对污染源排放烟羽进行扫描测量能获取污染气体(如SO2,NO2)柱浓度的连续分部,再结合风场信息后可以估算出污染源污染气体的排放总量。在实际测量中由于无法准确获取烟羽速度这一重要参数使得排放总量的计算变得比较困难,并且这也成为估算总量中的主要误差来源。文章研究了被动DOAS测量污染源排放烟羽速度的原理和方法,两套系统以固定夹角在烟羽下方获取烟羽通过一定距离的时间差从而得到烟羽运动速度。通过两套被动DOAS系统对某电厂排放烟羽进行测量得到了两个时刻的烟羽速度3.6和5.4 m·s-1,并与单经纬仪测风法获取当时烟羽高度上的风速结果进行对比表明,这种基于被动DOAS光学遥测方法能够满足烟羽速度的测量。  相似文献   

18.
甲醛(HCHO)是大气中含量最为丰富的羰基化合物,是非甲烷可挥发性有机化合物(NMVOCs)的最重要的中间产物之一,广泛参与大气中的光化学反应,同时也是气溶胶的重要前体物,在大气化学中承担了非常重要的作用。石油化工行业的VOCs类排放是城市大气中HCHO的重要来源,而目前化工园区中的HCHO等NMVOCs类污染物主要通过点式设备获取近地面浓度,缺乏立体监测数据。差分光学吸收光谱(DOAS)技术已成功应用于SO2和NO2等污染气体监测,甲醛由于其光学吸收强度相对较弱,反演波段内其他气体交叉干扰强,实际的监测应用相对较少。选取某石化企业,运用被动DOAS方法实现了甲醛柱浓度的精确反演。研究通过建立甲醛吸收截面与其他参与拟合气体吸收截面的二维相关性矩阵,选取甲醛吸收截面同其他气体吸收截面相关性最小的波段,即实现其他气体对甲醛的DOAS反演交叉干扰最小的波段的获取。同时选取外场实际采集的光谱,选择不同起始波段和截止波段做迭代DOAS反演,通过拟合残差来评估甲醛在不同波段的实际反演效果。在截面间交叉干扰小,拟合残差低的波段范围内,选择尽量宽的波段作为最佳的拟合波段,实现甲醛的精确DOAS反演。由甲醛同其他气体吸收截面的二维相关性矩阵结果,甲醛与NO2,SO2和O3和O4间在大部分波段内相关性均在0.5以下,交叉干扰小;甲醛同BrO在起始波长318~320 nm,截止波长340~346 nm以及起始波长330~334 nm,截止波长354~360 nm两个波段范围内截面间相关性小于0.5,适合作为HCHO的反演波段。通过选择不同起始波段和截止波段做甲醛的迭代DOAS反演,结合拟合截面相关性分析结果综合考虑,最终采用332.4~358.1 nm作为HCHO的反演波段,拟合残差在10-4量级。利用车载被动DOAS系统,通过建立吸收截面间二维相关性矩阵并通过实测光谱的迭代反演,获取了适用于该套系统的HCHO最佳拟合波段,拟合残差降低至10-4量级,在实现甲醛精确反演的基础上,结合系统GPS信息,获取了某化工企业甲醛柱浓度的空间分布,整个外场观测期间,HCHO的反演误差低于6%。结果表明,车载被动DOAS系统在快速获取化工园区甲醛空间分布信息上可以发挥重要作用,为城市大气中甲醛的立体监测提供了一种有效测量手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号