首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully developed turbulentflow fields with and without polymer solution at the same Reynolds number were measured by time-resolved particle image velocimetry (TRPIV) in a water channel toinvestigate the mechanism of drag-reducingsolution from theview of coherent structures manipulation. The streamwise mean velocity and Reynolds stress profiles in thesolution werecompared with those in water. After adding the polymer solution, the Reynolds stress in the near-wall area decreases significantly. Theresult relates tightly to the decease of the coherent structures' bursting. The spatial topology of coherentstructures duringbursts has been extracted by the new mu-level criterion based on locally averaged velocitystructure function.The effect of polymers onturbulent coherentstructures mainly reflects in the intensity, not in the shape. In the solution, it is by suppressing thecoherent structuresthat the wall friction isreduced.  相似文献   

2.
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag.  相似文献   

3.
雷诺应力各向异性涡黏模型的层析TRPIV测量   总被引:1,自引:0,他引:1  
姜楠  管新蕾  于培宁 《力学学报》2012,44(2):213-221
利用层析TRPIV测量水洞中平板湍流边界层3D-3C速度场的高分辨率时间序列数据库. 提出了空间局部平均多尺度速度结构函数的新概念, 描述湍流多尺度涡结构的空间拉伸、压缩、剪切变形和旋转. 用空间局部平均多尺度速度结构函数对湍流脉动速度进行了空间多尺度分解. 用空间流向局部平均多尺度速度结构函数, 根据湍流多尺度涡结构在流向的拉伸和压缩物理特征, 提出了新的湍流相干结构条件采样方法, 检测并提取了层析TRPIV数据中相干结构“喷射”和“扫掠”事件中的脉动速度、平均速度变形率、雷诺应力等物理量的空间拓扑形态. 通过研究平均速度变形率各分量与雷诺应力各分量之间的空间相位差异,肯定了壁湍流相干结构雷诺应力各向异性复涡黏模型的合理性.   相似文献   

4.
采用高时间分辨率粒子图像测速技术对沟槽壁面平板湍流边界层速度矢量场的时间序列及其统计量进行了实验测量,讨论了在同一来流速度下沟槽壁面对平均速度剖面﹑雷诺切应力及湍流强度的影响. 用流向速度分量的多尺度空间局部平均结构函数辨识壁湍流多尺度相干结构,用条件采样和相位平均技术提取壁湍流多尺度相干结构喷射和扫掠事件的脉动速度、展向涡量的二维空间拓扑形态. 结果表明,与同材料光滑壁面对比,沟槽壁面实现了10.73%的摩阻减小量;沟槽壁面湍流边界层湍流强度及雷诺切应力皆比光滑平板湍流边界层对应统计量小,说明沟槽壁面有效降低了湍流边界层内流体的脉动. 通过比较壁湍流相干结构猝发事件各脉动速度分量与展向涡量的空间分布特征,肯定了沟槽壁面的减阻效果,发现沟槽壁面通过抑制相干结构猝发事件实现减阻.  相似文献   

5.
成璐  姜楠 《实验力学》2015,30(1):51-58
运用高时间分辨率粒子图像测速(Time-resolved PIV简称TRPIV),测量得到平板湍流边界层流向/法向平面内瞬时速度矢量空间分布的时间序列;采用空间局部平均速度结构函数的概念,识别和提取湍流边界层中大尺度发卡涡包结构的空间特征。发现在湍流边界层中不同法向位置多个正负发卡涡包结构同时交替存在。这些分布在不同法向高度的发卡涡包结构之间通过倾斜的涡量剪切层相联系,构成了湍流边界层中内、外区紧密相连、相互作用的一种稳态的分布方式。  相似文献   

6.
壁湍流相干结构和减阻控制机理   总被引:2,自引:0,他引:2  
许春晓 《力学进展》2015,45(1):201504
剪切湍流中相干结构的发现是上世纪湍流研究的重大进展之一,这些大尺度的相干运动在湍流的动力学过程中起重要作用,也为湍流的控制指出了新的方向.壁湍流高摩擦阻力的产生与近壁区流动结构密切相关,基于近壁区湍流动力学过程的减阻控制方案可以有效降低湍流的摩擦阻力,但是随着雷诺数的升高, 这些控制方案的有效性逐渐降低.近年来研究发现, 在高雷诺数情况下外区存在大尺度的相干运动,这种大尺度运动对近壁区湍流和壁面摩擦阻力的产生有重要影响,为高雷诺数湍流减阻控制策略的设计提出了新的挑战.该文将对壁湍流相干结构的研究历史加以简单的回顾,重点介绍近壁区相干结构及其控制机理、近年来高雷诺数外区大尺度运动的研究进展,在此基础上提出高雷诺数减阻控制研究的关键科学问题.   相似文献   

7.
Numerical data of polymer drag reduced flows is interpreted in terms of modification of near-wall coherent structures. The originality of the method is based on numerical experiments in which boundary conditions or the governing equations are modified in a controlled manner to isolate certain features of the interaction between polymers and turbulence. As a result, polymers are shown to reduce drag by damping near-wall vortices and sustain turbulence by injecting energy onto the streamwise velocity component in the very near-wall region.  相似文献   

8.
The mechanisms of laminarization in wall-bounded flows have been investigated by performing direct numerical simulations (DNS) of turbulent channel flows. By decreasing Reynolds numbers systematically, the effects of the low Reynolds number are studied in connection with the near-wall turbulent structure and turbulent statistics. At approximately the critical Reynolds number, the turbulent skin friction is reduced, and the turbulent structure changes qualitatively in the very near-wall region. Instantaneous turbulent structures reveal that streamwise vortices, the cores of which are at y+ 10, disappear, although low speed streaks and Reynolds shear stress are still produced by larger streamwise vortices located in the buffer region y+ > 10. Sweep motions induced by these vortical structures are shifted toward the center of a channel and also significantly deterred, which may heighten the effects of the viscous sublayer over most of the channel section and suppress the regeneration mechanisms of new streamwise vortices in the very near-wall region. To investigate the details of how large-scale coherent vortices affect the viscous sublayer and the relevant small-scale streamwise vortices, a body force is virtually imposed in the wall-normal direction to enhance the large streamwise vortices. As a result, it is found that when they are sufficiently enhanced, the small-scale vortices reappear, and the sweep events are again dominant in the viscous sublayer.  相似文献   

9.
苏健  田海平  姜楠 《力学学报》2016,48(5):1033-1039
超疏水壁面由于具有减阻和自清洁功能而成为国内外减阻和海洋防污等研究领域的热点之一,而20世纪湍流中相干结构的发现为湍流的控制指出新的方向,尤其近壁区涡结构对摩擦阻力贡献很大.利用高时间分辨率粒子图像测速技术,研究了超疏水壁面(SH)以及亲水壁面(PH)湍流边界层中正负展向涡的空间分布特征,研究逆向涡对超疏水壁面近壁区流动结构的影响和超疏水壁面的减阻机理.首先利用空间多尺度局部平均涡量的概念提取壁湍流发卡涡展向涡头(顺向涡)和逆向涡,实现了准确识别涡心并排除小尺度涡的干扰;然后根据检测到的顺向涡和逆向涡流线分布图,发现逆向涡始终处于正向涡的上游和下方,并且对正向涡的进一步发展起抑制作用;最后对两种壁面边界层中逆向涡数量以及出现概率进行对比,发现具有减阻效果的超疏水壁面边界层中出现更多逆向涡.说明逆向涡可抑制上方顺向涡与壁面的强烈剪切,并使靠近壁面的流体加速,从而产生减阻效果;超疏水壁面中涡结构具有更大的β角,使其更好地阻碍了发卡涡头附近强烈的喷射和扫略;超疏水壁面逆向涡出现概率明显大于亲水壁面.这些结果表明:超疏水壁面表现出的减阻特性(Reδ≈13 500,减阻5.8%)与两板产生逆向涡的差异有关.  相似文献   

10.
It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters throughout the flow, causing fewer vortices to be generated under the control. However, when the structural spacing is sufficiently large, the generation of new vortex is not suppressed over the no-control surface in the near-wall region, resulting in an increase of the second- and fourth-quadrant Reynolds shear stresses. Although strong actuating velocity intensifies the near-wall turbulence, the increase in the turbulence activity is attributed to the generation of counter-clockwise near-wall vortices by the increased vortex transport.  相似文献   

11.
12.
姜楠  王瑞新  田砚 《实验力学》2011,26(6):645-652
针对圆柱尾流中沿流向存在的Karman涡街周期性涡旋结构,对湍流雷诺应力与平均运动变形率之间的空间弛豫效应进行了实验研究.在回流式水槽中,放入不同直径的圆柱模型,获得不同雷诺数下的圆柱尾流,利用二维高时间分辨率粒子图像测速(TRPIV)技术测量圆柱尾流二维瞬时速度空间分布图像的时间序列.经过数字图像处理,获得二维雷诺应...  相似文献   

13.
The relationship between the bursting event and the low/high-speed streak in the logarithmic law (log-law) region of a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.  相似文献   

14.
充分发展圆管湍流的实验研究   总被引:4,自引:0,他引:4  
采用粒子数字图像测速(digital particle image velocimetry,DPIV)和定量流动显示技术(quantitative flow visualization,QFA)对充分发展的圆管湍流进行了研究。测量结果和直接数值模拟(direct numerical simulation,DNS)结果进行了比较,结果表明作者开发的DPIV技术取得了满意的精度。在此基础上对圆管湍流的动力学机理进行了研究,分析了上抛和下扫在湍流生成中的贡献以及流动显示结构内的脉动速度分布,测量结果显示在圆管湍流的近壁区存在横向强脉冲现象和流动显示所能观察到的结构为上抛占主导地位的结构。  相似文献   

15.
One very effective method of reducing the drag of a turbulent fluid flow is through the use of soluble, viscoelastic, long-chain, high-molecular-weight polymer additives. These additives have produced drag reduction of up to 80% in pipe flows. Polymers are typically added by injecting high concentration solutions into an established Newtonian flow.This study investigated the mechanism of drag reduction that occurs when a long-chain, high-molecular-weight polymer is injected along the centerline of a pipe with a concentration high enough to form a single, coherent, unbroken thread. In the present experiments, the unbroken threads existed for more than 200 pipe diameters downstream of the injector and produced drag reductions on the order of 40%. Previous authors have contended that this type of drag reduction is caused by the interaction of the thread with the outer flow. However, it has been proven in cases where the polymer is mixed throughout the flow that drag reduction requires the existence of polymer in the near-wall region. The objective of this study was to test the hypothesis that drag reduction from a polymer thread is caused by transport of polymer molecules from the thread into the near-wall region of the pipe. The objective was realized through the measurement of the drag reduction, the radial location of the thread, and the polymer concentration in the near-wall region. The concentration was measured by laser-induced fluorescence utilizing fluorescein dye as the tracer. This study provides strong evidence that the drag reduction from a polymer thread is caused by the transport of very low concentrations of polymer from the thread into the near-wall region.  相似文献   

16.
Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reθ is 2460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.  相似文献   

17.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
The aim of the present work is to investigate the role of intense Reynolds shear-stress events in the generation of the secondary flow in turbulent ducts. We consider the connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Durán et al. (J. Fluid Mech., vol. 694, 2012, pp. 100–130). We examine both the geometrical properties of these structures and their contribution to the mean in-plane velocity components, and we perfom a comparison with turbulent channel flow at similar Reynolds number. The contribution to a certain mean quantity is defined as the ensemble average over the detected coherent structures, weighted with their own occupied volume fraction. In the core region of the duct, the contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. In the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity. However, such contribution is less relevant than that of the complementary portion of the flow not included in such objects. Our results show that strong Reynolds shear-stress events are affected by the presence of a corner but, despite the important role of these structures in the dynamics of wall-bounded turbulent flows, their contribution to the secondary flow is relatively low, both in the core and in the corner.  相似文献   

19.
The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A perceptible fraction of the total dissipation is modeled. However, this fraction - about one third - is small enough so that the total dissipation suffers only marginally from some potential shortcomings of the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds number scaling are discussed and compared. This tensor and thus the turbulent small scale structures are not isotropic at the Reynolds numbers investigated. Furthermore, the near-wall anisotropy under the horseshoe vortex is likely to persist to larger Reynolds numbers as it can be linked to a flapping of the near-wall layer. The turbulent length scale shows a strong spatial variability. In the region of the vortex system in the cylinder front, the distribution reveals a similar shape as the one of the turbulent kinetic energy and its amplitude is in the order of magnitude of the cylinder diameter. In contrast to the region dominated by the approach flow, the turbulent length scale is independent of the Reynolds number in the region dominated by the vortex system. Even though the flow investigated is in non-equilibrium, common a priori estimations and scalings of the Kolmogorov length scale based on macro scales give satisfying results.  相似文献   

20.
利用子波分析对平壁湍流猝发现象的研究   总被引:7,自引:1,他引:7  
李栎  许春晓  张兆顺 《力学学报》2001,33(2):153-162
利用槽道湍流直接数值模拟的数据库,采用子波分析的方法。对平壁湍流猝发现象的多尺度特性进行了研究,在不同惊讶上对猝发平均周期进行了统计,并利用局部标度指数研究了猝发过程的奇异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号