首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We study two flux qubits with a parameter coupling scenario. Under the rotating wave approximation, we truncate the 4-dimensional Hilbert space of a coupling flux qubits system to a 2-dimensional subspace spanned by two dressed states |01 and |10 . In this subspace, we illustrate how to generate an Aharnov-Anandan phase, based on which, we can construct a NOT gate (as effective as a C-NOT gate) in this coupling flux qubits system. Finally, the fidelity of the NOT gate is also calculated in the presence of the simulated classical noise.  相似文献   

2.
Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing n SWAP gates simultaneously. In our scheme, the SQUID works in the charge regime, the quantum logic gate operations are performed in the subspace spanned by two charge states |0〉 and |1〉. The interaction between the qubits and the cavity field can be achieved by turning the gate voltage and the external flux. Especially, the gate operation time is independent of the number of the qubits, and the gate operation is insensitive to the initial state of the cavity mode. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting the frequency of the cavity mode, and the operation time satisfies the requirement for the designed experiment by choosing suitable detuning and the quality factor of the cavity. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.  相似文献   

3.
We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed in two lower flux states, and the excited state [2〉 would not participate in the procedure. The SQUIDs undergo no transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum iogic in SQUID-system.  相似文献   

4.
We propose an experimentally realizable method to control the coupling between two flux qubits. In our proposal, the bias fluxes are always fixed for these two inductively coupled qubits. The detuning of these two qubits can be initially chosen to be sufficiently large, so that their initial interbit coupling is almost negligible. When a variable frequency or time-dependent magnetic flux (TDMF) is applied to one of the qubits, a well-chosen frequency of the TDMF can be used to compensate the initial detuning and to couple two qubits. This proposed method avoids fast changes of either qubit frequencies or the amplitudes of the bias magnetic fluxes through the qubit loops, and also offers a remarkable way to implement any logic gate, as well as tomographically measure flux qubit states.  相似文献   

5.
The entangling evolution of the coupled qubits interacting with non-Markov environment is investigated in terms of concurrence. The results show that the entanglement of quantum systems depends on not only the initial state of system but also the coupling ways between qubit and environment. It shows that: (1) when the system is initially in ( | 00 ?±| 11 ?)/?2( | 00 \rangle\pm| 11 \rangle)/\sqrt{2} state or in the mixed state which is produced by the state, if we can control the coupling between the qubits and the environment in a asymmetrical state, we can make the quantum system always in the entangled state. (2) For an initial state ( | 01 ?±| 10 ?)/?2( | 01 \rangle\pm| 10 \rangle)/\sqrt{2} or in its mixed state, in contrast, there will not be entangled death under the symmetric coupling. We also find that, in ( | 01 ?±| 10?)/?2( | 01 \rangle\pm| 10\rangle)/\sqrt{2} or in its mixed state, the stronger the interaction between qubits is, the better to struggle against entanglement sudden death is.  相似文献   

6.
We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limit, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.  相似文献   

7.
The effectiveness of decoherence suppression schemes is explored using quantum bits (qubits) stored in Li np Rydberg states. Following laser excitation, pulsed electric fields coherently control the electronic spin-orbit coupling, facilitating qubit creation, manipulation, and measurement. Spin-orbit coupling creates an approximate decoherence-free subspace for extending qubit storage times. However, sequences of fast NOT operations are found to be substantially more effective for preserving coherence.  相似文献   

8.
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.  相似文献   

9.
We propose, in analogy with trapped ions, scalable quantum computation schemes with superconducting charge qubits couple to a micro-wave cavity mode. Single-qubit addressing can be achieved and selective qubit-cavity coupling can be effectively controlled by the external magnetic flux, thus gate operations can be selectively performed. During the implementation of a certain (virtual) excitation operation all the qubits and cavity parameters can be chosen to be fixed, the only parameter needs to be tunable is the external magnetic flux. This is a more efficient way of controlling the system dynamics as it is much easier for experimental realization.  相似文献   

10.
The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of n qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号