首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

2.
The covalent carbamoyl carbonyl compounds Re(CO)5COHN2, cis-M(CO)4(L)CONH2, M(CO)3(L)2CONH2 and M(CO)3(D)CONH2 (M = Mn, Re; L = PPh3, PEt3; D = bipy, phen) are formed by reactions of the cationic complexes [Re(CO)6]+, [M(CO)5L]+, [M(CO)4L2]+ and [M(CO)4D]+ (M = Mn, Re; L = PPh3, PEt3; D = bipy, phen) with liquid NH3 with concomitant deprotonation: [M(CO)6?nLn]+ + 2 NH3 → M(CO)5?nLnCONH2 + NH4+ (n = 0, 1, 2) and [M(CO)4D]+ + 2 NH3 → M(CO)3(D)CONH2 + NH4+ The stability of the above-mentioned carbamoyl carbonyl complexes increases from the penta- to the tetra- to the tri-carbonyl derivatives. In all cases the rhenium compounds are much more stable than the corresponding manganese complexes. Whereas the carbamoyl compound Re(CO)4(PEt3)CONH2 can be isolated by reaction of [Re(CO)5PEt3]+ with NH3, the corresponding manganese complex undergoes Hofmann degradation of amides even at ?70°C to form HMn(CO)4PEt3 and NH4NCO. The IR and some mass and 1H NMR spectra of the new hexacoordinated carbamoyl carbonyl complexes are discussed and the reactions of these compounds with liquid NH3, HCl and CH3OH are described.  相似文献   

3.
The specific formation of LFe(CO)4 (L = PPh3, P(OPh)3, P(OMe)3 can be achieved by the reaction of Fe(CO)5 with L in the presence of a catalytic amount of iron carbonyl anion. A convenient synthetic procedure was developed in which the iron carbonyl anion catalyst is generated in situ. It is shown that the mechanism does not proceed by the simple cleavage of the Fe2(CO)82? or Fe3(CO)112? anions, because triphenylphosphine reacts with these anions in the absence of Fe(CO)5 to produce (PPh3)2Fe(CO)3.  相似文献   

4.
The reactions of the complexes CpCo(CO)L (Cp = cyclopentadienyl, L = CO, PPh3) with ClCH2CN have been investigated. Chloroacetonitrile reacts with CpCo(CO)PPh3 to give the cationic complex [CpCo(CH2CN)(CNCH2Cl)PPh3]+, which has been isolated and characterized. Compounds of the type [CpCo(CH2CN)(bipy)]+ BPh4? and CpCo(CH2CN)PPh3CN have been obtained by substitution reactions.  相似文献   

5.
Abstract

Reactions of metal carbonyl cations (M(CO)6 +, M = Mn, Re) with hydride-, methide- or halide-containing metal carbonyl anions (Fe(CO)4R?, R = H, Me; W(CO)5R?, R = H, Me, Cl, Br, I) produce products that indicate several mechanisms are operative. Reactions of the halo-tungsten complexes produce neutral, solvated tungsten complexes, W(CO)5(CH3CN) and W(CO)4(CH3CN)2 and M(CO)5X in a reaction that appears to be initiated by decomposition of W(CO)5X?. In contrast, the tungsten hydride and methide complexes react, predominantly, by transfer of the hydride or methide to a carbonyl of the cation at a much faster rate. The iron hydride and methide complexes react by iron-based nucleophilicity involving a two-electron process.  相似文献   

6.
Quaternary ammonium borohydrides, used directly or generated in phase transfer reactions, are highly effective reagents for preparing metal carbonyl anions from metal carbonyls [Mo(CO)6, Mn2(CO)10, Re2(CO)10, CO2(CO)8, Fe3(CO)12, Ru3(CO)12 and (η5-C5H5)2Mo2(CO)6] and from some metal carbonyl halides [BrMn(CO)5 and η5-C5H5Mo(CO)3Cl]. Where strongly basic anions would be formed from a halide [BrMn(CO)4PPh3 and η5-C5H5Ru(CO)2Br], the reactions provide efficient syntheses of the corresponding hydrides instead. The anion η5-C5H5Fe(CO)2? is not accessible by these techniques; reaction of η5-C5H5Fe(CO)2Br yields the iron dimer (via the highly nucleophilic anion) and the dimer is unreactive toward Q+BH4?. Reductions of Re2(CO)10 conducted in CH2Cl2 provide Re2(CO)9Cl? in high yield.  相似文献   

7.
The reactions of Na[Mn(CO)5] or Na[Mn(CO)4(PPh3)] with CH2ClI yield the new chloromethyl complexes Mn(CO)5CH2Cl and Mn(CO)4(PPh3)CH2Cl. Reaction of Na[Re(CO)5] or Na[CpRu(CO)2] with ClCH2OMe yields Re(CO)5CH2Cl and CpRu(CO)2CH2Cl respectively, in addition to the corresponding methoxymethyl complexes (Cp = η5-C5H5). Reaction of CpRu(CO)2CH2OMe with HCl yields the corresponding chloromethyl complex.  相似文献   

8.
The CuI complex Cu(CH3CN)4+PF6 chemoselectively abstracts phosphine from Cp(CO)(PPh3FeCOCH3 and produces Cp(CO)2FeCH3 in good yield. No evidence for electrophilic CuI coordinating the acetyl ligand on Cp(CO)(L)FeCOCH3 (L = CO, PPh3), however, was obtained Reactions of CuI and Cp(CO)(PPh3)FeCH3, with and without the presence of CO, also were examined. With CO, this methyl complex first gives its acetyl derivative Cp(CO)(PPh3)FeCOCH3 (1 atm CO in CH2Cl2 solution, 5 min), and after excess CO is removed (it otherwise blocks further reaction), Cp(CO)2FeCH3 forms.  相似文献   

9.
The [(XC5H4)Mn(CO)(NO)L]+ complexes react with primary alkylamines to give carboxamido complexes, where X = H, CH3; L = CO, P(C6H5)3. In the case of L = CO, the carboxamido complexes may be isolated, whereas with L = P(C6H5)3 the reversibility of the reactions permits the isolation only of the starting materials when the solutions are evaporated to dryness. This diminished tendency to form carboxamido complexes is related to the decreased electron density on the carbonyl carbon going from L = CO to L = P(C6H5)3. The presence of the coordinated NO group does not change the reactivity of the cationic complexes towards amines.  相似文献   

10.
Trends in 31P NMR coordination shifts for the complexes M(CO)3BrL2, [M(CO)3L2(NCMe)]+, MeC5H4Mn(CO)L2 and [MeC5H4Mn(CO)2]2L2 (M = Mn and Re;L2 = Ph2PCH2PPh2, Ph2PCH2CH2PPh2 and Ph2PCH2CH2AsPh2) are discussed.  相似文献   

11.
Perfluoronorbornadiene reacts with the compounds [M(PPh3)4] (M = Pt, Pd) and [IrCl(CO)(PMePh2)2] to give the adducts [(C7F8)M(PPh3)2] and [(C7F8)IrCl(CO)(PMePh2)2] in which one of the double bonds is coordinated to the metal atom. The platinum complex reacts further with [Pt(PPh3)4] to give [(C7F8){Pt(PPh3)2}2] having both double bonds coordinated to a Pt atom. The carbonylmetal anions [M?] react to form the mono-substitution products [(C7F7)M] (M = Mn(CO)5, Re(CO)5, Ir(CO)2(PPh3)2, Rh(CO)2(PPh3)2), but the use of an excess of [Fe(CO)2(η-C5H6)]? leads to substitution of one fluorine atom on each of the double bonds. The complex having M = Mn(CO)5 reacts with [Pt(PPh3)4] to afford the derivative [(C7F7){Mn(CO)4(PPh3)}{Pt(PPh3)2}], and the compound where M = Ir(CO)2(PPh3)2 undergoes an oxidative addition reaction with acetyl chloride. Oxidative coupling products have been isolated on UV irradiation of a mixture of perfluoronorbornadiene and [Fe(η4-CH2CRCHCH2)(CO)3] (R = H, Me), and under similar conditions the reaction with Fe(CO)5 affords [(C7F8)Fe(CO)4] in very low yield.  相似文献   

12.
The mass spectra of π-RC5H4Re(CO)2XY (R = H, CH3 COOCH3, X, Y = H, CH3, COCH3, Br, I, HgCl) have been studied. A successive expulsion of carbonyl groups, a common fragmentation path for cyclopentadienyl metal carbonyls, is observed in addition to the parallel elimination of substituents X and Y from the molecular ions of seven-coordinate rhenium complexes. Loss of a hydrogen molecule from the [M  2CO]+ ion is a characteristic of the fragmentation of σ-methyl complexes.  相似文献   

13.
The betain‐like compound S2CC(PPh3)2 ( 1 ), which is obtained from CS2 and the double ylide C(PPh3)2, reacts with [Co2(CO)8] and [Mn2(CO)10] in THF to afford the salt‐like complexes [Co{S2CC(PPh3)2}3][Co(CO)4]3 ( 2 ) and [(CO)4Mn{S2CC(PPh3)2}][Mn(CO)5] ( 3 ), respectively, in good yields. At both d6 cations 1 acts as a chelating ligand. Disproportionation reactions from formal Co0 into CoIII and Co?I and from Mn0 into MnI and Mn?I occurred with the removal of four or one carbonyl groups, respectively. The crystal structures of 2· 5.5THF and 3· 2THF are reported, which show a shortening of the C–C bond in the ligand upon complex formation. The compounds are further characterized by 31P NMR and IR spectroscopy.  相似文献   

14.
Novel binuclear substituted manganese(I) carbonyls [Mn(CO)4?nLn]2(μ-N-N)2 (n = 1, (N-N)2 = biimidazolate, L = PBun3; (N-N)2 = bibenzimidazolate, L = P(OMe)3, P(OPh)3, PPh3, PEt3 or PBun3, as well as n = 2; (N-N)2 = biimidazolate, or bibenzimidazolate, L = PBun3, PEt3 or P(OMe)3) are described, in which the anions (N-N)2 act as tetradentate bridging-groups. They were prepared by treating [Mn(CO)4(μ-Br)]2 with thallium or potassium salts of 2,2′-biimidazole or 2,2′-bibenzimidazole and subsequent displacement of CO by L. The structures of the complexes are discussed.  相似文献   

15.
Abstract

Polarographic measurements on the cations CpFe(CO)3-n + (L=PPh3, n=1,2; L=CH3NC, n=1–3) show an increasingly anodic one-electron reduction wave as CO is successively substituted by L. The effect is greater for L=CNCH3 than for L=PPh3. The reduced species then either lose L and dimerize (giving rise to a second reduction wave) decompose. Heretofore unreported Mössbauer parameters for the isocyanide complexes are given and correlated with the polarographic results.  相似文献   

16.
Protonation of the alkynyl complex Cp(CO)(PPh3)RuCCPh (1) at low temperature affords quantitatively the vinylidened complex [Cp(CO)(PPh3)RuCCH(Ph)]+ (3), which upon warming to room temperature forms an equilibrium with the η2-phenylacetylene complex [Cp(CO)(PPh3)Ru(η2-HCCPh)]+ (4), with the latter predominating. Subsequent reaction with ethylene oxide yields the cyclic oxacarbene complex [Cp(CO)(PPH3)Ru=CCH(Ph)CH2CH2O]+ (5), which can be regarded as the result of a net [3+2] cycloaddition reaction between 3 and ethylene oxide. Depronation of 5 affords teh corresponding neutral cyclic vinyl complex [Cp(CO)(PPH3)RuC=C(Ph)CH2CH2O]+ (6), which can in turn be protonated to regenerate 5 in a diastereoselective manner. The structures of complexes 5 and 6 were determined by X-ray crystallography.  相似文献   

17.
Pure cis and trans isomers of CpMo(CO)2(L)X (Cp = η5-C5H5, L = PPh3 or PBu3, X = Br, or I) have been separated by chromatography and characterized by infrared and proton NMR spectroscopy. The reactions of trans-CpMo(CO)2(L)CH3 with HgX2 (X = Cl, Br, I, SCN) afford cis-CpMo(CO)2(L)X in high yield. Both linkage isomers are obtained in the reaction with Hg(SCN)2, L = PPh3. The mercuric halides react with CpMo(CO)2(L)COCH3 to form the metalmetal bonded derivatives trans-CpMo(CO)2(L)HgX. Reactions of CpMo(CO)2(L)CH3 or CpMo(CO)2(L)COCH3 with bromine or iodine yield the halide complexes CpMo(CO)2(L)X (X = Br and I, respectively), the product mixtures containing high proportions of the trans isomers.  相似文献   

18.
The reactions of the cationic complexes [CpMn(CO)2NO]+, [MeCpMn(CO)2NO]+ (Cp = η5-C5H5, MeCp = η5-C5H4CH3), [CpRe(CO)2NO]+, [CpMn(CO)(L)NO]+ (L = PPh3, PEt2Ph, AsPh3, CNMe, CNEt), {[CpMn(CO)NO]2Me2PC2H4PMe2}2+ and {CpMn(CO)NO]2Ph2PC2H4PPh2}2+ with liquid NH3 yield the neutral carbamoyl complexes CpMn(CO)(NO)CONH2, MeCpMn(CO)(NO)CONH2, CpRe(CO)(NO)CONH2, CpMn(L)(NO)CONH2 (L = PPh3, PEt2Ph, AsPh3, CNMe, CNEt), [CpMn(NO)CONH2]2Me2PC2H4PMe2 and [CpMn(NO)CONH2]2Ph2PC2H4PPh2. Properties and reactions of these new compounds are described.  相似文献   

19.
Relativistic density functional calculations have been carried out for the group VI transition metal carbonyls M(CO)5L (M=Cr, Mo, W; L=OH2, NH3, PH3, PMe3, N2, CO, OC (isocarbonyl), CS, CH2, CF2, CCl2, NO+). The optimized molecular structures and M(SINGLE BOND)L bond dissociation energies, as well as the metal–carbonyl bond energy of the trans CO group, have been calculated. Besides the marked dependence of the trans M(SINGLE BOND)CO bond length on the type of ligand L, such an effect on the that bond energy is also observed. For the chromium compounds, the trans Cr(SINGLE BOND)CO bond length varies from 184 to 199 pm and its bond energy from 242 to 150 kJ/mol. For the molybdenum compounds, the range is 197 to 216 pm and 253 to 128 kJ/mol and, for tungsten, 198 to 214 pm and 293 to 159 kJ/mol. The observed trends can be explained with the π acceptor strength of the L ligand. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1985–1992, 1997  相似文献   

20.
Three series of cationic manganese(I) carbonyls are reported: [Mn(CO)5-n(CNMe)n(CNPh)]PF6 (n = 1 → 4), [Mn(CO)5-n(CNMe)(CNPh)n]PF6 (n = 1 → 4), and [Mn(dpe)(CO)4-n(CNMe)n]PF6 (n = 1 → 4). Most of these compounds were prepared from a substituted metal carbonyl halide by replacement of halide ion by an added ligand (CNR or CO), such reactions requiring an added halide ion acceptor (Ag+ or AlCl3). The added ligand enters the site of departing halide ion. It was possible to prepare isomers of many compounds reported, taking advantage of this stereospecificity. Structures of the products were defined, often unequivocally, by infrared and nmr spectroscopic data. Cyclic voltammetry showed that these compounds undergo one electron oxidations, the ease of oxidation determined by the nature of the ligand groups and the stereochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号