首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we summarized the assembly behavior of DNA organic hybrids and listed reported strategies of tuning the morphology of assemblies. The self‐assembly and morphological regulation of DNA organic hybrids provide an effective way to construct functional nanostructures with potential applications in nanomaterials, drug delivery and tissue engineering. The future directions are discussed.  相似文献   

2.
A new family of alkynylated, amphiphilic dendrimers consisting of amidoamine linkers connected to 5,5′-functionalized 2,2′-bipyridine cores has been developed and evaluated in the formation of metallodendrimers of different generations and in self-assembly protocols. A convergent synthetic strategy was applied to provide dumbbell-shaped amphiphilic dendrimers, where the 2,2′-bipyridine cores could be coordinated to FeII centers to afford corresponding metallodendrimers. The ability of the metallic- and non-metallic dendritic structures to self-assemble into functional supramolecular aggregates were furthermore evaluated in aqueous solution. Spherical aggregates with sizes of a few hundred nanometers were generally produced, where controlled disassembly of the metallodendrimers through decomplexation could be achieved.  相似文献   

3.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution-state” picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.  相似文献   

4.
Nature adopts complex chemical networks to finely tune biochemical processes. Indeed, small biomolecules play a key role in regulating the flux of metabolic pathways. Chemistry, which was traditionally focused on reactions in simple mixtures, is dedicating increasing attention to the network reactivity of highly complex synthetic systems, able to display new kinetic phenomena. Herein, we show that the addition of monophosphate nucleosides to a mixture of amphiphiles and reagents leads to the selective templated formation of self-assembled structures, which can accelerate a reaction between two hydrophobic reactants. The correct matching between nucleotide and the amphiphile head group is fundamental for the selective formation of the assemblies and for the consequent up-regulation of the chemical reaction. Transient stability of the nanoreactors is obtained under dissipative conditions, driven by enzymatic dephosphorylation of the templating nucleotides. These results show that small molecules can play a key role in modulating network reactivity, by selectively templating self-assembled structures that are able to up-regulate chemical reaction pathways.  相似文献   

5.
pH-Tunable nanoscale morphology and self-assembly mechanism of a series of oligo(p-phenyleneethynylene) (OPE)-based bolaamphiphiles featuring poly(ethylene imine) (PEI) side chains of different length and degree of hydrolysis are described. Protonation and deprotonation of the PEI chains by changing the pH alters the hydrophilic/hydrophobic balance of the systems and, in turn, the strength of intermolecular interactions between the hydrophobic OPE moieties. Low pH values (3) lead to weak interaction between the OPEs and result in spherical nanoparticles, in which aggregation follows an isodesmic mechanism. In contrast, higher pH values (11) induce deprotonation of the polymer chains and lead to a stronger, cooperative aggregation into anisotropic nanostructures. Our results demonstrate that pH-responsive chains can be exploited as a tool to tune self-assembly mechanisms, which opens exciting possibilities to develop new stimuli-responsive materials.  相似文献   

6.
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d -maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.  相似文献   

7.
A pyridine-based amphiphile complexed with 1,5-, 1,6-, 2,6-, or 2,7-dihydroxy naphthalene self-assembled in water to form nanotubes with inner diameters of 46, 38, 24, 18, and 11 nm in which the naphthalene molecules formed J-type aggregates. In contrast, the amphiphile complexed with 1,2-, 1,3-, 1,4-, 1,7-, 1,8-, or 2,3-dihydroxy naphthalene formed nanofibers in which the naphthalene molecules formed H-type aggregates. The inner diameter of the nanotubes strongly depended on the regioisomeric dihydroxy naphthalene. UV–vis, fluorescence, infrared spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry showed that nanotubes with smaller inner diameters had weaker intermolecular hydrogen bonds between the tilted amphiphiles complexed with the naphthalene molecules within the membrane walls and showed larger Stokes shifts in the excimer fluorescence of the naphthalene moiety. These findings should be useful not only for fine-tuning the inner diameters of supramolecular nanotubes but also for controlling the aggregation states of functional aromatic molecules to generate nanostructures with useful optical and electronic properties in water.  相似文献   

8.
High aspect ratio, sugar-decorated 2D nanosheets are ideal candidates for the capture and agglutination of bacteria. Herein, the design and synthesis of two carbohydrate-based Janus amphiphiles that spontaneously self-assemble into high aspect ratio 2D sheets are reported. The unique structural features of the sheets include the extremely high aspect ratio and dense display of galactose on the surface. These structural characteristics allow the sheet to act as a supramolecular 2D platform for the capture and agglutination of E. coli through specific multivalent noncovalent interactions, which significantly reduces the mobility of the bacteria and leads to the inhibition of their proliferation. Our results suggest that the design strategy demonstrated here can be applied as a general approach for the crafting of biomolecule-decorated 2D nanosheets, which can perform as 2D platforms for their interaction with specific targets.  相似文献   

9.
10.
Surface-confined self-assembly of functional molecular building blocks has recently been widely used to create low-dimensional, also covalent, superstructures with tailorable geometry and physicochemical properties. In this contribution, using the lattice Monte Carlo simulation method, we demonstrate how the structure-property relation can be established for the 2D self-assembly of a model tetrapod molecule with reduced symmetry. To that end, a rigid functional unit comprising a few interconnected segments arranged in different tetrapod shapes was used and its self-assembly on a triangular lattice representing a (111) crystal surface was simulated. The results of our calculations show strong dependence of the structure formation on the molecular symmetry, in particular on the (pro)chiral nature of the building block. The simulations predicted the formation of unusual ordered racemic networks with unique aperiodic spatial distribution of the surface enantiomers. Molecular symmetry was also found to have significant influence on the enantiopure self-assembly which resulted in the Kagome and brickwall networks and other less ordered extended superstructures with parallelogram pores. The theoretical findings of this contribution can be relevant to designing and on-surface synthesis of molecular superstructures with predefined geometries and functions. In particular, the predicted molecular architectures can stimulate experimental efforts to fabricate and explore new nanostructures, for example graphitic, having the composition and geometry proposed in our study.  相似文献   

11.
There is increasing interest in the development and applications of synthetic receptors that recognize target biomolecules in aqueous media. We have developed a new tweezer-type synthetic receptor that gives a significant fluorescence response upon complexation with heme in aqueous solution at pH 7.4. The synthetic receptor consists of a tweezer-type heme recognition site and sulfo-Cy5 as a hydrophilic fluorophore. The receptor–heme complex exhibits a supramolecular amphiphilic character that facilitates the formation of self-assembled aggregates, and both the tweezer moiety and the sulfo-Cy5 moiety are important for this property. The synthetic receptor also exhibits significant fluorescence responses to biliverdin and bilirubin, but shows very weak fluorescence responses to flavin mononucleotide, folic acid, and nicotinamide adenine dinucleotide, which contain smaller π-scaffolds.  相似文献   

12.
The self-assembly behavior of 1H-benzotriazole (BTA) in aqueous solutions below its solubility limit has been revealed for the first time using NMR and light scattering techniques. Relaxation time, diffusion and chemical shift NMR techniques in addition to various light scattering techniques were used to study the aqueous behavior of 1H-Benzotriazole (BTA). These studies have revealed the self assembly of BTA molecules in water. Results show that BTA molecules tend to aggregate in water to form nanoparticles with radius in the range of 5 nm. The critical aggregation concentration (CAC) is estimated based on NMR data to be ~16–20 mM. Such a critical aggregation concentration is comparable with the typical critical micelle concentration (CMC) for surfactants that have moderate aqueous solubility. The self-assembly behavior of BTA may not be limited to benzotriazole. It might be generally true for all poorly water soluble species to aggregate at concentrations below their solubility.  相似文献   

13.
自组装分子凝胶的原位光聚合及其聚合物研究   总被引:3,自引:1,他引:3  
黎坚  王理  殷以华  杨亚江 《化学学报》2002,60(9):1700-1706
合成了一种以二胺为基础的可聚合凝胶因子4,4’-二(α-甲基丙烯酰氧基- 1,3-亚乙氧基羰基丙酰氨基)二苯甲烷(BMDM),利用在特定结构区域的非共价 键相互作用自组装形成有序的三维纤维网络,使有机溶剂凝胶化。并利用紫外光引 发聚合,“锁定”凝胶网络,形成稳定的有序高级结构。光聚合后,分子凝胶的稳 定时间超过1年;而光聚合前,分子凝胶的稳定时间一般只有几天到几十天。由电 镜和偏光显微镜研究的凝胶形态学表明,凝胶中存在由相互缠结的三维纤维网络构 成的球晶。DSC研究表明,未聚合的分子凝胶中球晶结构的解缔(peak 1)须克服 一个势垒,势能为ΔH = 0.8 kJ·mol~(-1),这主要是一种范德华弱相互作用。而 发生的凝胶-溶胶相转变(peak 2),则说明了自组装纤维中BMDM分子间存在氢键 等次价键相互作用。这种次价键能即为凝胶-溶胶相转变热焓ΔH = 22.3 kJ· mol~(-1)。聚合凝胶只有体积相变而无凝胶-溶胶相转变,且聚合凝胶的体积相变 温度要比光聚合前的凝胶-溶胶相转变温度高出约为110 ~ 120 ℃。研究干聚合凝 胶在丙酮中的溶胀特性发现,其溶胀过程遵循二级溶胀动力学,影响该凝胶溶胀行 为的因素主要是交联程度。  相似文献   

14.
Despite the central importance of aqueous amphiphile assemblies in science and industry, the size and shape of these nano-objects is often difficult to control with accuracy owing to the non-directional nature of the hydrophobic interactions that sustain them. Here, using a bioinspired strategy that consists of programming an amphiphile with shielded directional Watson–Crick hydrogen-bonding functions, its self-assembly in water was guided toward a novel family of chiral micelle nanotubes with partially filled lipophilic pores of about 2 nm in diameter. Moreover, these tailored nanotubes are successfully demonstrated to extract and host molecules that are complementary in size and chemical affinity.  相似文献   

15.
高玉霞  梁云  胡君  巨勇 《化学进展》2018,30(6):737-752
超分子手性普遍存在于自然界和生命体内,可通过分子在非共价键作用下有序排列形成,对生命科学、药物化学及材料科学的发展起着重要的作用。天然产物来源广泛,具有独特的立体结构和多手性中心,由于其分子手性可以在组装过程中随着分子的有序堆积得到传递和放大,形成超分子手性结构,因此是一类优良的超分子手性构筑基元。研究天然产物的手性自组装,不仅可以拓展其在超分子化学中的应用,还能深化人们对自然界和生命体中手性现象的理解。本文总结了近年来甾体、三萜、氨基酸、糖等天然产物小分子化合物在超分子手性自组装方面的研究进展及其未来的发展前景。  相似文献   

16.
Amphiphilic coil‐rod‐coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self‐organize into various supramolecular aggregates in bulk and in aqueous solutions. In this paper, we report the self‐assembling behavior of amphiphilic coil‐rod‐coil molecular isomers. These molecules consist of biphenyl and phenyl units connected by ether bonds as the rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization of 7 and 12 as the flexible chains. Their aggregation behavior was investigated by differential scanning calorimetry, thermal optical polarized microscopy, small‐angle X‐ray scattering spectroscopy, and transmission electron microscopy. The results imply that the molecular structure of the rod building block and the length of the PEO chains dramatically influence the creation of supramolecular aggregates in bulk and in aqueous solutions. In the bulk state, these molecules self‐organize into a hexagonal perforated lamellar and an oblique columnar structure, respectively, depending on the sequence of the rod building block. In aqueous solution, the molecule with a linear rod segment self‐assembles into sheet‐like nanoribbons. In contrast, its isomer, with a rod building block substituted at the meta‐position of the aryl group, self‐organizes into nanofibers. This is achieved through the control of the non‐covalent interactions of the rod building blocks.  相似文献   

17.
The sizes of available self-assembled hydrogen-bond-based supramolecular capsules and cages are rather limited. The largest systems have volumes of approximately 1400–2300 Å3. Herein, we report a large, hexameric cage based on intermolecular amide–amide dimerization. The unusual structure with openings, reminiscent of covalently linked cages, is held together by 24 hydrogen bonds. With a diameter of 2.3 nm and a cavity volume of ∼2800 Å3, the assembly is larger than any previously known capsule/cage structure relying exclusively on hydrogen bonds. The self-assembly process in chlorinated, organic solvents was found to be strongly concentration dependent, with the monomeric form prevailing at low concentrations. Additionally, the formation of host–guest complexes with fullerenes (C60 and C70) was observed.  相似文献   

18.
Chiral head groups have been introduced into water‐soluble hydroxyl‐terminated nonionic amphiphiles and the impact of the head group stereochemistry on the supramolecular ultrastructures has been studied. Enantiomeric isomers were compared with the achiral meso form and the racemic mixture by means of cryogenic transmission electron microscopy and circular dichroism spectroscopy. Structurally, all amphiphiles are composed of the first‐generation hydrophilic polyglycerol head group coupled to a single hydrophobic hexadecyl chain through an amide linkage and diaromatic spacer. The enantiomers aggregate to form twisted ribbons with uniform handedness, whereas the meso stereoisomer and racemic mixture produce elongated assemblies, namely, tubules and platelets, but without a chiral ultrastructure. Simulations on the molecular packing geometries of the stereoisomers indicate different preferential assembly routes that explain the individual supramolecular aggregation behavior.  相似文献   

19.
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure.  相似文献   

20.
A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule–substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号