首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three identity nucleophilic substitution reactions at tetracoordinated silicon atom with inversion and retention pathways: Nu + SiH3Cl → Nu + SiH3Cl[Nu = (1)Cl, (2) LiCl, and (3) (LiCl)2], are investigated using the G2M(+) theory. Our results show that changing the nucleophile can shift the mechanism (favorable pathway), stepwise from a single-well PES for reaction 1, via a double-well PES for reaction 2, to a triple-well PES for reaction 3, indicating the importance of steric and electronic effects on the SN2@Si. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Pentacoordinate phosphorus species play a key role in organic and biological processes. Yet, their nature is still not fully understood, in particular, whether they are stable, intermediate transition complexes (TC) or labile transition states (TS). Through systematic, theoretical analyses of elementary S(N)2@C, S(N)2@Si, and S(N)2@P reactions, we show how increasing the coordination number of the central atom as well as the substituents' steric demand shifts the S(N)2@P mechanism stepwise from a single-well potential (with a stable central TC) that is common for substitution at third-period atoms, via a triple-well potential (featuring a pre- and post-TS before and after the central TC), back to the double-well potential (in which pre- and postbarrier merge into one central TS) that is well-known for substitution reactions at carbon. Our results highlight the steric nature of the S(N)2 barrier, but they also show how electronic effects modulate the barrier height.  相似文献   

3.
To obtain a set of consistent benchmark potential energy surfaces (PES) for the two archetypal nucleophilic substitution reactions of the chloride anion at carbon in chloromethane (S(N)2@C) and at silicon in chlorosilane (S(N)2@Si), we have explored these PESes using a hierarchical series of ab initio methods [HF, MP2, MP4SDQ, CCSD, CCSD(T)] in combination with a hierarchical series of six Gaussian-type basis sets, up to g polarization. Relative energies of stationary points are converged to within 0.01 to 0.56 kcal/mol as a function of the basis-set size. Our best estimate, at CCSD(T)/aug-cc-pVQZ, for the relative energies of the [Cl(-), CH(3)Cl] reactant complex, the [Cl-CH(3)-Cl](-) transition state and the stable [Cl-SiH(3)-Cl](-) transition complex is -10.42, +2.52, and -27.10 kcal/mol, respectively. Furthermore, we have investigated the performance for these reactions of four popular density functionals, namely, BP86, BLYP, B3LYP, and OLYP, in combination with a large doubly polarized Slater-type basis set of triple-zeta quality (TZ2P). Best overall agreement with our CCSD(T)/aug-cc-pVQZ benchmark is obtained with OLYP and B3LYP. However, OLYP performs better for the S(N)2@C overall and central barriers, which it underestimates by 2.65 and 4.05 kcal/mol, respectively. The other DFT approaches underestimate these barriers by some 4.8 (B3LYP) to 9.0 kcal/mol (BLYP).  相似文献   

4.
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.  相似文献   

5.
We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover nucleophilic substitution at carbon in X?+CH3Y (SN2@C), at silicon in X?+SiH3Y (SN2@Si), at tricoordinate phosphorus in X?+PH2Y (SN2@P3), and at tetracoordinate phosphorus in X?+POH2Y (SN2@P4). The main feature of going from SN2@C to SN2@P is the loss of the characteristic double‐well potential energy surface (PES) involving a transition state [X? CH3? Y]? and the occurrence of a single‐well PES with a stable transition complex, namely, [X? PH2? Y]? or [X? POH2? Y]?. The differences between SN2@P3 and SN2@P4 are relatively small. We explored both the symmetric and asymmetric (i.e. X, Y=Cl, OH) SN2 reactions in our model systems, the competition between backside and frontside pathways, and the dependence of the reactions on the conformation of the reactants. Furthermore, we studied the effect, on the symmetric and asymmetric SN2@P3 and SN2@P4 reactions, of replacing hydrogen substituents at the phosphorus centers by chlorine and fluorine in the model systems X?+PR2Y and X?+POR2Y, with R=Cl, F. An interesting phenomenon is the occurrence of a triple‐well PES not only in the symmetric, but also in the asymmetric SN2@P4 reactions of X?+POCl2? Y.  相似文献   

6.
Reactions of chloramine, NH2Cl, with HO-, RO- (R = CH3, CH3CH2, CH3CH2CH2, C6H5CH2, CF3CH2), F- , HS- , and Cl- have been studied in the gas phase using the selected ion flow tube technique. Nucleophilic substitution (S(N)2) at nitrogen to form Cl- has been observed for all the nucleophiles. The reactions are faster than the corresponding S(N)2 reactions of methyl chloride; the chloramine reactions take place at nearly every collision when the reaction is exothermic. The thermoneutral identity S(N)2 reaction of NH2Cl with Cl-, which occurs approximately once in every 100 collisions, is more than two orders of magnitude faster than the analogous reaction of CH3Cl. The significantly enhanced S(N)2 reactivity of NH2Cl is consistent with a previous theoretical prediction that the barrier height for the S(N)2 identity reaction at nitrogen is negative relative to the energy of the reactants, whereas this barrier height for reaction at carbon is positive. Competitive proton abstraction to form NHCl- has also been observed with more highly basic anions (HO-, CH3O-, and CH3CH2O-), and this is the major reaction channel for HO- and CH3O-. Acidity bracketing determines the heat of deprotonation of NH2Cl as 374.4 +/- 3.0 kcal mol(-1).  相似文献   

7.
The reactions of various amines (RNH(2); R = H, CH(3), C(2)H(5) and i-C(3)H(7)) with the methoxy methyl cation (CH(2)OCH(3)(+)) have been investigated using an FT-ICR mass spectrometer, and the experimental results are supplied with ab initio calculations. The amines show clear trends in their reactivities with variable degree of: 1) nucleophilic substitution, 2) addition-elimination and 3) hydride abstraction. In all cases addition-elimination dominates over nucleophilic substitution, and for R not equal H the observed reactions occur at the collisional limit. The potential energy profiles for all three reaction types correlate with the basicities of the amines; the more basic amine-the more favourable is the reaction; in other words: nucleophilicity follows basicity in the gas phase.  相似文献   

8.
We report a high-quality, ab initio, full-dimensional global potential energy surface (PES) for the Cl((2)P, (2)P(3/2)) + CH(4) reaction, which describes both the abstraction (HCl + CH(3)) and substitution (H + CH(3)Cl) channels. The analytical PES is a least-squares fit, using a basis of permutationally invariant polynomials, to roughly 16,000 ab initio energy points, obtained by an efficient composite method, including counterpoise and spin-orbit corrections for the entrance channel. This composite method is shown to provide accuracy almost equal to all-electron CCSD(T)/aug-cc-pCVQZ results, but at much lower computational cost. Details of the PES, as well as additional high-level benchmark characterization of structures and energetics are reported. The PES has classical barrier heights of 2650 and 15,060 cm(-1) (relative to Cl((2)P(3/2)) + CH(4)(eq)), respectively, for the abstraction and substitution reactions, in good agreement with the corresponding new computed benchmark values, 2670 and 14,720 cm(-1). The PES also accurately describes the potential wells in the entrance and exit channels for the abstraction reaction. Quasiclassical trajectory calculations using the PES show that (a) the inclusion of the spin-orbit corrections in the PES decreases the cross sections by a factor of 1.5-2.5 at low collision energies (E(coll)); (b) at E(coll) ≈ 13,000 cm(-1) the substitution channel opens and the H/HCl ratio increases rapidly with E(coll); (c) the maximum impact parameter (b(max)) for the abstraction reaction is ~6 bohr; whereas b(max) is only ~2 bohr for the substitution; (d) the HCl and CH(3) products are mainly in the vibrational ground state even at very high E(coll); and (e) the HCl rotational distributions are cold, in excellent agreement with experiment at E(coll) = 1280 cm(-1).  相似文献   

9.
Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.  相似文献   

10.
Novel dicyanido-bridged dicationic RuIIISSRuIII complexes [{Ru(P(OCH3)3)2}2(mu-S2)(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (4, X=Cl, Br) were synthesized by the abstraction of the two terminal halide ions of [{RuX(P(OCH3)3)2}2(mu-S2)(mu-X)2] (1, X=Cl, Br) followed by treatment with m-xylylenedicyanide. 4 reacted with 2,3-dimethylbutadiene to give the C4S2 ring-bridged complex [{Ru(P(OCH3)3)2}2{mu-SCH2C(CH3)=C(CH3)CH2S}(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (6, X=Cl, Br). In addition, 4 reacted with 1-alkenes in CH3OH to give alkenyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (7: R=CH2CH3, 9: R=CH2CH2CH3) and alkenyl methyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-S(CH3)S(CH2C=HR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (8: R=CH2CH3, 10: R=CH2CH2CH3) via the activation of an allylic C-H bond followed by the elimination of H+ or condensation with CH3OH. Additionally, the reaction of 4 with 3-penten-1-ol gave [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHCH2OH)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (11) via the elimination of H+ and [{Ru(P(OCH3)3)2}2(mu-SCH2CH=CHCH2S)(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (12) via the intramolecular elimination of a H2O molecule. 12 was exclusively obtained from the reaction of 4 with 4-bromo-1-butene.  相似文献   

11.
The reaction of corannulene (C(20)H(10)) with 1,2-C(2)H(4)Hal(2) (Hal = Cl or Br) in the presence of AlCl(3) affords stable nonplanar carbocations C(20)H(10)CH(2)CH(2)Hal(+) (Hal = Cl (1) and Br (2)) with an -CH(2)CH(2)Hal moiety attached to the interior carbon atom of the bowl. In the analogous reaction with 1-bromo-2-chloroethane, the selective (up to 98%) abstraction of chloride is observed with the formation of cation 2. The molecular structures of bowl-shaped carbocations 1 and 2 crystallized as salts with AlCl(4)(-) counterions are revealed by single-crystal X-ray diffraction. The reaction of 2 with methanol or ethanol provides further decoration of the nonplanar polyarene upon the nucleophilic addition of alkoxy groups to the exterior carbon atom of the corannulene moiety. The (1)H NMR investigation of the corresponding products, C(20)H(10)(CH(2)CH(2)Br)(OCH(2)R) (R = H (3) and CH(3) (4)), shows the formation of intramolecular H···O and H···Br hydrogen bonds.  相似文献   

12.
Activation barriers (DeltaHMe(double dagger)) for adding methyl radicals to ions of the general formula CH3CR=OCH3+ have been measured by looking at the threshold energies for the reverse reaction, dissociative photoionization of ethers of the general formula RC(CH3)2OCH3. Dissociation by loss of a methyl radical has more favorable thermochemistry than loss of R*, yet the onset of R* loss occurs at lower energies than loss of CH3*. In other words, the more endothermic dissociation exhibits a lower appearance energy. Contrathermodynamic ordering of appearance energies is observed for R = Et, nPr, iPr, tBu, and neopentyl. The sum of the appearance energy difference, DeltaAE, and the thermochemical difference (DeltaDeltaH, calculated using G3 theory) gives a lower bound for the barrier for adding methyl radical to CH3CR=OCH3+. More specifically, the difference between that activation barrier and the one for adding R* to (CH3)2C=OCH3+, DeltaHMe(double dagger)-DeltaHR(double dagger), equals DeltaAE + DeltaDeltaH and has values in the range 20-24 kJ mol(-1) for the homologous series investigated. There is no systematic trend with the steric bulk of R, and available evidence suggests that DeltaHR(double dagger) does not have a value >5 kJ mol(-1). The difference in barrier heights, DeltaHMe(double dagger)-DeltaHiPr(double dagger) for CH3* plus iPrC(CH3)=OX+ vs iPr* + (CH3)2C=OX+, has the same value, regardless of whether X = H or CH3. Mixing of higher energy electronic configurations provides a qualitative theoretical explanation for some (but not all) observed trends in barrier heights.  相似文献   

13.
The potential energy surfaces for the reaction between H2O and the protonated alcohols MeOH2+, EtOH2+, PriOH2+, and Bu(t)OH2+ have been explored by means of high level ab initio theoretical methods. Both nucleophilic substitution (SN2) and elimination (E2) pathways have been investigated. Front side (SNF) and the familiar back side (SNB) Walden inversion attack of the nucleophile have been found to be competing for the H2O Bu(t)OH2+ system. In contradiction with the customary relationship between so-called "steric effects" and barrier heights--more alkyl-substituted SN2 reaction centres have higher SN2 reaction barriers--the SN2 reaction barriers are found to be Et > Me > Pri > Bui. This result is in excellent agreement with available experimental data.  相似文献   

14.
Wong KM  Tang WS  Lu XX  Zhu N  Yam VW 《Inorganic chemistry》2005,44(5):1492-1498
A series of platinum(II) terpyridyl alkynyl complexes that have been derivatized with basic amino functionalities, [Pt(tpy)(C[triple bond]C-C6H4-NR2-4]X (X = OTf-, R = CH3 1, R = CH2CH2OCH3 2, R = H 3; X = Cl-, R = CH3 4, R = CH2CH2OCH3 5, R = H 6) (tpy = 2,2':6',2' '-terpyridine), have been synthesized and characterized. Their photophysical responses at various acid concentrations were studied. The abilities of the complexes to function as colorimetric and luminescence pH sensors were demonstrated with dramatic color changes and luminescence enhancement upon introduction of acid.  相似文献   

15.
通过相应烯烃的硅氢化反应,合成了-(CH_2)_n-SiX_3(n=2,3,4;X=Cl.OCH_3)及ClCH_2-(CH_2)_NSiX_3(n=2.3;X=Cl.OCH_3)等两类新型有机硅化合物.比较了它们水解缩聚产物的热稳定性.结果表明,所合成的两类硅单体均具预定的化学结构.在H_2PtCl_6-P(C_6H_5)_3的催化下,硅氢化反应系按反-马尔可夫尼科夫规则进行.另外,这两类有机硅单体的水解缩聚产物的热稳定性与芳基的位置(β、γ或δ位)有关而以在β位的为最高.  相似文献   

16.
To better understand electronic effects on the diastereoselectivity of nucleophilic additions to the carbonyl group, a series of 2-X-4-tert-butylcyclohexanones (X = H, CH(3), OCH(3), F, Cl, Br) were reacted with LiAlH(4). Reduction of ketones with equatorial substituents yields increasing amounts of axial alcohol in the series for X [H < CH(3) < Br < Cl < F < OCH(3)]. These data cannot be explained by steric or chelation effects or by the theories of Felkin-Anh or Cieplak. Instead, an electrostatic argument is introduced: due to repulsion between the nucleophile and the X group, axial approach becomes energetically less favorable with an increase in the component of the dipole moment anti to the hydride approach trajectory. The ab initio calculated diastereoselectivities were close to the experimental values but did not reproduce the relative selectivity ordering among substituents. For reduction of ketones with axial substituents, increasing amounts of axial alcohol are seen in the series for X [Cl < Br < CH(3) < OCH(3) < H < F]. After some minor adjustments are made, this ordering is consistent with both the electrostatic model and Felkin-Anh theory. Cieplak theory cannot account for these data regardless of adjustments. Ab initio calculated diastereoselectivities were reasonably accurate for the nonpolar substituents but were poor for the polar substituents.  相似文献   

17.
Reaction dynamics for a microsolvated SN2 reaction OH-(H2O)+CH3Cl have been investigated by means of the direct ab initio molecular dynamics method. The relative center-of-mass collision energies were chosen as 10, 15, and 25 kcal/mol. Three reaction channels were found as products. These are (1) a channel leading to complete dissociation (the products are CH3OH+Cl- +H2O: denoted by channel I), (2) a solvation channel (the products are Cl-(H2O)+CH3OH: channel II), and (3) a complex formation channel (the products are CH3OH...H2O+Cl-: channel III). The branching ratios for the three channels were drastically changed as a function of center-of-mass collision energy. The ratio of complete dissociation channel (channel I) increased with increasing collision energy, whereas that of channel III decreased. The solvation channel (channel II) was minor at all collision energies. The selectivity of the reaction channels and the mechanism are discussed on the basis of the theoretical results.  相似文献   

18.
Gas-phase nucleophilic substitution reactions at the imidoyl carbon have been investigated using chloride exchanges, Cl- + RY=CHCl right harpoon over left harpoon RY=CHCl + Cl- with Y = N and R = F, H or CH3, at the MP2, B3LYP and G2(+) levels using the MP2/6-311+G geometries. The results are compared with those for the vinyl (Y = CH) and carbonyl (Y = O) carbon substitution. The mechanism and reactivity of substitution at the imidoyl carbon are intermediate between those of carbonyl (SNpi) and vinyl carbon (SNsigma) substitution, which is directly related to the electronegativity of Y, CH < N < O. The prediction of competitive SNsigma with SNpi path for the imidoyl chloride is consistent with the S(N)1-like mechanism proposed for reactions in solution. The important factors in favor of an in-plane concerted SN2 (SNsigma) over an out-of-plane pi-attack (SNpi) path are (i) lower proximate sigma-sigma* charge-transfer energies (DeltaECT), (ii) stronger electrostatic stabilization (DeltaENCT), and (iii) larger lobe size on C(alpha) for the sigma*- than pi*-LUMO despite the higher sigma* than pi* level. The electron correlation energy effects at the MP2 level are overestimated for the relatively delocalized structure (S(N)pi TS) but are underestimated for the localized structure (SNsigma TS) so that the MP2 energies lead to a wrong prediction of preferred reaction path for the vinyl chloride. The DFT at the B3LYP level predicts correct reaction pathways but overestimates the electron correlation effects.  相似文献   

19.
4-Alkyl-2-nitrothiophenes [10: R = CH3, CH(OH)CH3, CH(OCH3)CH3] react with secondary aliphatic amines, in the presence of AgNO3, to give 3-alkyl-2-amino-5-nitrothiophenes (12) through an oxidative nucleophilic substitution of hydrogen (ONSH) of synthetic interest. This behavior is in striking contrast with that of the parent 2-nitrothiophene (6), which was found to undergo ring-opening in analogous reaction conditions. A possible rationale for the crucial effect of alkyl groups is suggested, grounded also on a study of the corresponding Meisenheimer-like adducts.  相似文献   

20.
The syntheses of the vinyloxycyclotriphosphazene derivatives N3P3X5OCH=CH2 (X = OMe, OCH2CF3) and the N3P3(NMe2)4(OCH=CH2)2 isomeric mixture along with improved preparations of N3P3X5OCH=CH2 (X = F, NMe2) are reported. The interactions between the vinyloxy function and the cyclophosphazene in these and the previously reported N3P3Cl5 (OCH=CH2) and N3P3F6-n(OCH=CH2)n (n = 1-4) have been examined by ultraviolet photoelectron spectroscopy (UPS) and NMR spectroscopy. The UPS data for the chloro and fluoro derivatives show a strong electron-withdrawing effect of the phosphazene on the olefin that is mediated with decreasing halogen substitution. The 1H and 13C NMR data for N3P3X5OCH=CH2 (X = F, Cl, OMe, OCH2CF3, NMe2) show significant changes as a function of the phosphazene substituent. There is a linear correlation between the beta-carbon chemical shift on the vinyloxy unit and the phosphorus chemical shift at the vinyloxyphosphorus centers. The chemical shifts of the different phosphorus centers on each ring are also related in a linear fashion. These relationships may be understood in terms of the relative electron donor-acceptor abilities of the substituents on the phosphazene ring. The 1H NMR spectra of the N3P3(NMe2)4(OCH-CH2)2 isomeric mixture allow for assignment of the relative amounts of cis and trans isomers. A model for the observed cis preference in the formation of N3P3Cl4(OCH=CH)2 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号