首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
从优化膜系、控制膜厚、改善膜面、均衡应力等四个方面开展了实验研究工作 ,为制备 1 31 5nm 4 5°高反射镜提供一些判断实验数据 ,并提出改进的方法 ,从而使制备的高反射膜取得满意的结果 :反射率大于 99.8%。  相似文献   

3.
 从优化膜系、控制膜厚、改善膜面、均衡应力等四个方面开展了实验研究工作,为制备1315nm 45°高反射镜提供一些判断实验数据,并提出改进的方法,从而使制备的高反射膜取得满意的结果:反射率大于99.8%。  相似文献   

4.
从优化膜系、控制膜厚、改善膜面、均衡应力等四个方面开展了实验研究工作,为制备1315nm 45°高反射镜提供一些判断实验数据,并提出改进的方法,从而使制备的高反射膜取得满意的结果:反射率大于99.8%。  相似文献   

5.
从膜层内的驻波场分布和对膜系的相移要求出发,利用倍频的设计思想对氧碘激光腔内45°入射高反射镜进行优化设计,得出了满足对632.8nm和1 315nm双波长高反射,同时在1 315nm处有180°位相延迟的新膜系结构,与传统的设计膜系相比,此膜系大大降低了高折射率层的厚度,薄膜性能有望得到进一步提高。  相似文献   

6.
氧碘激光腔内45°入射高反射镜的膜系设计   总被引:2,自引:1,他引:2       下载免费PDF全文
 从膜层内的驻波场分布和对膜系的相移要求出发,利用倍频的设计思想对氧碘激光腔内45°入射高反射镜进行优化设计,得出了满足对632.8nm和1 315nm双波长高反射,同时在1 315nm处有180°位相延迟的新膜系结构,与传统的设计膜系相比,此膜系大大降低了高折射率层的厚度,薄膜性能有望得到进一步提高。  相似文献   

7.
大口径反射镜是大型反射式光学系统中关键的光学元件,在工作波段的反射率直接决定了光学系统的性能。随着地基、天基观测设备的发展,对大口径反射镜高反射膜提出了更宽的工作波段、更高的反射率、更好的环境适应性等要求。针对这些挑战,各种新的膜系结构、新的镀制方法、新的膜层材料纷纷出现,满足了大口径反射镜高反射膜的各种需求。本文对近些年国内外的大口径反射镜高反射膜研究进展予以综述,并预测大口径反射镜高反膜制备的技术趋势将由铝反射膜向银反射膜、由热蒸发向磁控溅射发展。  相似文献   

8.
多层介质膜光栅用高反射镜的严格耦合波分析   总被引:1,自引:1,他引:0  
基于严格耦合波和增强透射矩阵的方法,提出了一种数值稳定的求解多层介质膜光学特性的机理模型.利用该模型计算了多层介质膜光栅用高反射镜的优化设计膜系.使用电子束热蒸发方式制备的多层介质膜光谱特性和理论设计的结果符合得很好,该严格耦合波模型是分析介质膜光学特性有效的稳定的数值求解方法.  相似文献   

9.
武东升  刘旭  李海峰 《光子学报》2002,31(3):360-362
本文介绍了一种用λ/4膜系设计特定波长范围内的全偏振全角度反射镜的方法,给出了反射带中心波长、边缘波长及带宽的表达式,并对如何避免Brewster窗作了定量分析.  相似文献   

10.
基于热力解耦的热弹性模型,采用常用假设,通过方程分析法,导出了激光辐照下高反射镜热变形问题的尺度律。同时,还发现了对同一模型,当其他条件不变时,变形、温升、应力与激光功率密度之间具有线性关系。数值结果证明了该问题尺度律的成立及线性关系的正确性。该结论是利用缩比模型研究大尺寸反射镜在激光辐照下的热变形问题的依据,且为解决缩比模型设计、辐照条件设计和模型实验数据反推到原型等相关问题提供了参考准则。  相似文献   

11.
基于热力解耦的热弹性模型,采用常用假设,通过方程分析法,导出了激光辐照下高反射镜热变形问题的尺度律。同时,还发现了对同一模型,当其他条件不变时,变形、温升、应力与激光功率密度之间具有线性关系。数值结果证明了该问题尺度律的成立及线性关系的正确性。该结论是利用缩比模型研究大尺寸反射镜在激光辐照下的热变形问题的依据,且为解决缩比模型设计、辐照条件设计和模型实验数据反推到原型等相关问题提供了参考准则。  相似文献   

12.
用3-DOSIFEL程序计算、分析了在自由电子激光振荡器实验中,电子束偏入射、斜入射和反射镜倾斜引起的各种三维效应对振荡器自由电子激光特性影响。  相似文献   

13.
产生X光激光的等离子体环境对X光多层膜反射镜造成损伤与破坏。通过模拟实验,给出国产Mo/Si多层膜反射镜的破坏阈值大约是0.10J/cm2,在这个辐照剂量下,多层膜表面均方粗糙度明显增加,反射率几乎降至为零。提出了防止多层膜反射镜破坏的一些想法。  相似文献   

14.
X光多层膜反射镜的损伤与破坏实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 产生X光激光的等离子体环境对X光多层膜反射镜造成损伤与破坏。通过模拟实验,给出国产Mo/Si多层膜反射镜的破坏阈值大约是0.10J/cm2,在这个辐照剂量下,多层膜表面均方粗糙度明显增加,反射率几乎降至为零。提出了防止多层膜反射镜破坏的一些想法。  相似文献   

15.
随着氧碘化学激光器(COIL)输出功率的不断提高,传统的膜系设计已不能满足要求。在倍频膜系的设计基础上,优化设计出了激光45°入射时对1 315 nm和632.8 nm双波长高反(HR)并在1 315 nm处具有90°位相延迟的高反射镜,其基底材料为融石英,高折射率材料为ZrO2, 低折射率材料为SiO2。然后,采用电子束蒸发手段制备了口径为200 mm的高反射位相延迟镜。最后对该延迟镜的性能进行了测试,结果表明:对632.8 nm波长的反射率大于等于95.0%,对1 315 nm波长的反射率大于等于99.8%,位相延迟在90.235°~95.586°范围内。  相似文献   

16.
随着氧碘化学激光器(COIL)输出功率的不断提高,传统的膜系设计已不能满足要求。在倍频膜系的设计基础上,优化设计出了激光45°入射时对1 315 nm和632.8 nm双波长高反(HR)并在1 315 nm处具有90°位相延迟的高反射镜,其基底材料为融石英,高折射率材料为ZrO2, 低折射率材料为SiO2。然后,采用电子束蒸发手段制备了口径为200 mm的高反射位相延迟镜。最后对该延迟镜的性能进行了测试,结果表明:对632.8 nm波长的反射率大于等于95.0%,对1 315 nm波长的反射率大于等于99.8%,位相延迟在90.235°~95.586°范围内。  相似文献   

17.
李志成  刘斌  张荣  张曌  陶涛  谢自力  陈鹏  江若琏  郑有蚪  姬小利 《物理学报》2012,61(8):87802-087802
采用光学传递矩阵方法设计了紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜, 并利用等离子体增强化学气相沉积技术在蓝宝石(0001)衬底上制备了SiO2/Si3N4介质膜分布式布拉格反射镜. 光反射测试表明, 样品反射谱的峰值波长仅与理论模拟谱线相差10 nm, 并随着反射镜周期数的增加而蓝移. 由于SiO2与Si3N4具有相对较大的折射率比, 因而制备的周期数为13的样品反射谱的峰值反射率就已大于99%. 样品反射谱的中心波长为333 nm, 谱峰的半高宽为58 nm. 样品截面的扫描电子显微镜和表面的原子力显微镜测量结果表明, 样品反射谱的中心波长蓝移是由子层的层厚和界面粗糙度的变化引起的. X射线反射谱表明,子层界面过渡层对于反射率的影响较小, 并且SiO2膜的质量比Si3N4差, 也是造成反射率低于理论值的原因之一.  相似文献   

18.
周龙峰  张昂  张俊波  樊新龙  魏凌  陈善球  鲜浩 《物理学报》2016,65(13):139501-139501
在具有双曲面、抛物面或椭圆面反射镜的成像光学系统中,反射镜的位置误差通常具有对成像质量影响灵敏的特点.因此,在该类光学系统装调或工作过程中反射镜位置存在误差时需要对该反射镜进行精确调整.目前,反射镜位置校正的方法多基于对系统波前误差的测量,从而判断其位置误差.然而在系统工作过程中可能无法进行光学系统的波前测量,或者需要复杂的光学系统才能实现波前误差的测量.本文以焦平面图像清晰度作为评价函数,采用随机并行梯度下降算法对反射镜位置进行调整,使系统成像质量达到最佳.针对迭代过程中反射镜位置发生变化时图像偏离探测器靶面而无法探测的问题,本文采用了一种反射镜垂直光轴平移和旋转相结合的调整方法.在保证图像位置不变化的条件下对系统像差进行校正.室内实验验证了该方法具有可行性,校正后的成像质量达到衍射极限.  相似文献   

19.
空间遥感应用中的光学有效载荷对系统偏振控制提出了越来越高的要求,作为常用的宽光谱反射镜,金属银(Ag)膜反射镜的偏振特性随着环境温度的改变而变化。本文设计并制备了低偏振灵敏度的Ag膜反射镜,研究了反射镜在45°和60°入射角下,从室温25℃升温到150℃时的偏振特性变化和反射光谱变化情况。随着温度的升高,Ag膜的折射率在350~1 200 nm波长范围内有所增加;Ag膜反射镜的反射光中s和p光的相位差Δ在350~600 nm波长范围内减小,在600~650 nm波长范围内基本稳定,在650~1 200 nm波长范围内增大。温度上升到125℃时,Ag膜和反射镜表面形貌发生改变,增加了表面散射和吸收,导致350~900 nm波段反射率降低,在波长350 nm附近的降低约25%。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号