首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Instantaneous measurements of temperature, equivalence ratio, and major species were performed along a one-dimensional probe volume using simultaneous Raman/Rayleigh scattering in an unconfined turbulent lean-premixed swirling methane/air flame. Temperature was determined from Rayleigh scattering and the major species, CO2, O2, N2, CH4, H2O, and H2 from Raman scattering. Effective Rayleigh cross-sections were corrected using the local chemical composition obtained from Raman scattering. These experiments were conducted to investigate the compositional structure of a lean-premixed swirling flame in detail and to complement previous measurements of the underlying flow field. The flame was classified within a revised regime diagram at the cross-over between corrugated flames and thin reaction zones. Instantaneous temperature profiles varied significantly showing shapes ranging from laminar-like flamelets to mixing between reacted fluid elements and secondary air. Different thermo-kinetic states could be assigned to the inner and outer recirculation zones and to the inner and outer mixing layers. Linked to published velocity data of this flame, the present multi-scalar data are useful for validation of numerical simulations.  相似文献   

2.
We present a comparative evaluation of the potential of several flame observables to yield a simplified measurement of the scalar dissipation rate (χ). The realization of the importance of this quantity for the structure of diffusion flamelets has led to brilliant experimental efforts targeted to its measurement, with a particular emphasis on χstoich, i.e., its value at the stoichiometric surface, which has been shown to control extinction. Such measurements require a significant amount of experimental resources, since they necessitate the simultaneous acquisition of multi-scalar data. The possibility of a simplified measurement stems from the realization that the related gradient of the mixture fraction scales as the inverse of an appropriately defined thickness of the mixing layer. In this paper, we investigate experimentally the utilization of several flame observables for the measurement of this thickness. In a flat, nitrogen diluted, counterflow, methane/oxygen diffusion flame, the scalar dissipation rate was first measured directly using line Raman imaging of major species and a N2-molecule based definition of the mixture fraction. Additionally, LIF measurements of the hydroxyl radical (OH) and formaldehyde (HCHO) as well as Raman measurements of carbon monoxide (CO) were performed across the flamelet. The precision of χstoich estimates based on the thickness of the layers of these three observables as well as the layers corresponding to [HCHO] × [OH] and [CO] × [OH] “overlap” zones was evaluated in terms of following the theoretically expected inverse-square-root dependence on strain rate. Also, the absolute thickness of these layers was recorded, since it may restrict the application of simplified techniques in turbulent flow fields.  相似文献   

3.
An intensified multi-colour digital imaging system allowing simultaneous monitoring of light from an object in four wavelength bands was used for flame emission studies. The spatial distribution of the molecular emission from different flame radicals, such as OH, C2, CH, and CN was recorded, also in the presence of a heavy background due to Planck-radiating soot particles. Exposure times down to 8 s could be reached allowing studies of turbulent flames. The imaging spectroscopic recordings were supported by simultaneous point monitoring of the full emission spectrum. A technique for imaging flow measurements using a spectroscopic gas correlation technique is proposed.  相似文献   

4.
Data from a recent instantaneous, simultaneous, high-resolution imaging experiment of Rayleigh temperature and laser induced fluorescence (LIF) of OH and CH2O at the base of a turbulent lifted methane flame issuing into a hot vitiated coflow are analysed and contrasted to reference flames to further investigate the stabilization mechanisms involved. The use of the product of the quantified OH and semi-quantified CH2O images as a marker for heat release rate is validated for transient autoigniting laminar flames. This is combined with temperature gradient information to investigate the flame structure. Super-equilibrium OH, the nature of the profiles of heat release rate with respect to OH mole fraction, and comparatively high peak heat release rates at low temperature gradients is found in the kernel structures at the flame base, and found to be indicative of autoignition stabilization.  相似文献   

5.
The structure and stabilization mechanism of turbulent lifted non-premixed hydrocarbon flames have been investigated using combined laser imaging techniques. The techniques include Rayleigh scattering, laser induced predissociation fluorescence of OH, LIF of PAH, LIF of CH2O, and planar imaging velocimetry. The geometrical structure of multi-reaction zones and flow field at the stabilization region have been simultaneously measured in 16 hydrocarbon flames. The data reveal the existence of triple flame structure at the stabilization region of turbulent lifted flames. Increasing the jet velocity leads to an increase of the lift-off height and to a broadening of the lift-off region. Further analysis of the stabilization criterion at the lift-off height based on the premixed nature of triple-flame propagation and flow field data has been presented and discussed.  相似文献   

6.
Simultaneous line measurements of major species and temperature by the Raman–Rayleigh technique, combined with CO two-photon laser-induced fluorescence and crossed-plane OH planar laser-induced fluorescence have been applied to a series of flames in the Piloted Premixed Jet Burner (PPJB). The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a stoichiometric pilot and a large coflow of hot combustion products. Four flames with increasing jet velocities and constant jet equivalence ratios are examined in this paper. The characteristics of these four flames range from stable flame brushes with reaction zones that can be described as thin and “flamelet-like” to flames that have thickened reaction zones and exhibit extinction re-ignition behaviour. Radial profiles of the mean temperature are reported, indicating the mean thermal extent of the pilot and spatial location of the mean flame brush. Measurements of carbon monoxide (CO) and the hydroxyl radical (OH) reveal a gradual decrease in the conditional mean as the jet velocity is increased and the flame approaches extinction. Experimental results for the conditional mean temperature gradient show a progressive trend of reaction zone thickening with increasing jet velocities, indicating the increased interaction of turbulence with the reaction zone at higher turbulence levels. For the compositions examined, the product of CO and OH mole fractions ([CO][OH]) is shown to be a good qualitative indicator for the net rate of production of carbon dioxide. The axial variation of [CO][OH] is shown to correlate well with the mean chemi-luminescence of the flames including the extinction re-ignition regions. The experimental findings reported in this paper further support the hypothesis of an initial ignition region followed by extinction and re-ignition regions for certain PPJB flames.  相似文献   

7.
In this article, we report on one-dimensional single-pulse measurements of temperature and major-species concentration (O2, N2, H2O and H2) in a turbulent H2/air jet diffusion flame using Raman and Rayleigh scattering of KrF* excimer-laser radiation. Spatial resolution of 0.5 mm along a 6mm long line has been obtained, with reasonable error limits for mole fraction ( = 5 % for N2 detection) and temperature (T = 8 %) determination at flame temperatures. We present various profiles showing the composition and temperature along a line at different heights in the flame with particular emphasis on the lift-off region (i.e. lowx/D). In this zone, temperature and mixture fraction can be determined simultaneously — from a single laser pulse — in a spatial region extending from unburnt gas in the center of the jet across the flame front into the cool air of the surrounding atmosphere. This allows for the first time the systematic study of the shape and width of the high-temperature region and the corresponding concentration and temperature gradients. The comparison of averaged data and scatter plots with previous pointwise measurements shows good agreement.  相似文献   

8.
Characteristics of microscale hydrogen diffusion flames produced from sub-millimeter diameter (d = 0.2 and 0.48 mm) tubes are investigated using non-intrusive UV Raman scattering coupled with LIPF technique. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (O2, N2, H2O, and H2), and absolute hydroxyl radical concentration (OH) are made in the microflames for the first time. The probe volume is 0.02 × 0.04 × 0.04 mm3. In addition, photographs and 2-D OH imaging techniques are employed to illustrate the flame shapes and reaction zones. Several important features are identified from the detailed measurements of microflames. Qualitative 2-D OH imaging indicates that a spherical flame is formed with a radius of about 1 mm as the tube diameter is reduced to 0.2 mm. Raman/LIPF measurements show that the coupled effect of ambient air leakage and pre-heating enhanced thermal diffusion of H2 leads to lean-burn conditions for the flame. The calculated characteristic features and properties indicate that the buoyancy effect is minor while the flames are in the convection–diffusion controlled regime because of low Peclet number. Also, the effect of Peclet number on the flame shape is minor as the flame is in the convection–diffusion controlled regime. Comparisons between the predicted and measured data indicate that the trends of temperature, major species, and OH distributions are properly modeled. However, the code does not properly predict the air entrainment and pre-heating enhanced thermal-diffusive effects. Therefore, thermal diffusion for light species and different combustion models might need to be considered in the simulation of microflame structure.  相似文献   

9.
4 /H2/N2 diffusion flame. Important aspects of the measuring technique, such as accuracy, cross talk between different Raman bands, and the correction procedure for background from laser-induced fluorescence are discussed. In addition, a 2D LIF and Rayleigh imaging system were used to study the structures of OH, CH, NO, and temperature distributions in the flame. A comparison between two different CH detection schemes is presented. A main goal of the investigations was a detailed and accurate characterization of the investigated flame as well as the study of experimental techniques. Joint pdfs of the temperature and major species concentrations were determined at nearly 100 measuring locations covering the complete flame. Parts of the results are presented in the paper in order to discuss effects of differential diffusion, flame extinction, and interaction between flow field and chemistry. The measured data sets which are available on the Internet are well suited for testing and validating mathematical flame models. Received: 8 July 1997/Revised version: 23 October 1997  相似文献   

10.
The structure and dynamics of a turbulent partially premixed methane/air flame in a conical burner were investigated using laser diagnostics and large-eddy simulations (LES). The flame structure inside the cone was characterized in detail using LES based on a two-scalar flamelet model, with the mixture fraction for the mixing field and level-set G-function for the partially premixed flame front propagation. In addition, planar laser induced florescence (PLIF) of CH and chemiluminescence imaging with high speed video were performed through a glass cone. CH and CH2O PLIF were also used to examine the flame structures above the cone. It is shown that in the entire flame the CH layer remains very thin, whereas the CH2O layer is rather thick. The flame is stabilized inside the cone a short distance above the nozzle. The stabilization of the flame can be simulated by the triple-flame model but not the flamelet-quenching model. The results show that flame stabilization in the cone is a result of premixed flame front propagation and flow reversal near the wall of the cone which is deemed to be dependent on the cone angle. Flamelet based LES is shown to capture the measured CH structures whereas the predicted CH2O structure is somewhat thinner than the experiments.  相似文献   

11.
Single-shot formaldehyde laser-induced fluorescence (LIF) imaging measurements in a technical scale turbulent flame have been obtained using XeF excimer laser excitation in the ?1A2-˜X1A1 transition at 353.2 nm. Measurements have been carried out in a 150 kW natural gas swirl burner where formaldehyde distribution fields have the potential, in combination with OH concentration fields, to visualize the heat release distribution and therefore give an optimal visualization of flame-front positions. The extended areas where formaldehyde was detected in the swirl flame indicates the presence of low temperature chemistry in preheated gas pockets before ignition. Received: 31 January 2000 / Revised version: 2 March 2000 / Published online: 5 April 2000  相似文献   

12.
Fast (6250 Hz) line-of-sight measurements of infrared spectral radiation intensities (Iλ) from a luminous flame and a new deconvolution technique for the estimate of local scalar properties using inverse radiation calculations are reported. Time series data of Iλ for one diametric and nine chord-like radiation paths in a representative horizontal plane were measured. Statistical properties of Iλ, including mean, root mean square (rms), probability density function, autocorrelation coefficient, and power spectral density, were obtained from the time series data. The measured statistical properties of Iλ at two representative wavelengths, which are dominated by carbon dioxide (CO2) and soot radiation, respectively, are reported. The autocorrelation coefficient data show large negative loops with repeatable zero crossings at 20 ms and minimum values as low as −0.2 at 30–40 ms. Radial distributions of mean and rms CO2 mole fractions and temperatures were estimated using inverse calculations of mean Iλ at two different wavelengths dominated by CO2 radiation in conjunction with the relationship of these quantities to mixture fractions. Soot volume fraction distributions were also estimated using inverse calculations of mean Iλ at a wavelength dominated by continuum soot radiation. The estimated local mixture fraction distributions were in reasonably good agreement with sampling data from similar flames. The calculated mean Iλ from 1.4 to 4.8 μm other than those used in the inverse calculations matched the experimental data well. The present method provides non-intrusive measurements of major gas species and temperature statistics in turbulent soot containing flames not accessible to other optical diagnostics.  相似文献   

13.
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881–1887] is chosen to investigate H2/N2 jet flame supported by a vitiated coflow of products of lean H2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CMC is applied. Simulations are carried out for different jet velocities and coflow temperatures (Tc). The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for Tc=1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case, the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature.  相似文献   

14.
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe–flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material “evaporation and transportation”, “transformation”, “nucleation”, “initial growth”, “intermediate growth”, and “final growth”. XRD analysis shows that the chemical compositions of all structures correspond to MoO2.  相似文献   

15.
Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen(GO2/GH2) as propellants. During the combustion process, several spatially and time- resolved non-intrusive optical techniques, such as OH planar laser induced fluorescence(PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.  相似文献   

16.
The turbulent deflagration to detonation transition (DDT) process occurs when a subsonic flame interacts with intense turbulence resulting in spontaneous acceleration and the onset of DDT. The mechanisms that govern the spontaneous ignition are deduced intricately in numerical simulations. This work experimentally explores the conditions that are known precursors to detonation initiation. More specifically, the experiment presented investigates the role of flame-generated compression as a cycle that continuously amplifies until a hotspot forms on the flame front and ignites. The study quantifies the compression comparatively against other flame regimes through ultra-high speed pressure measurements while qualitatively detailing flame generated compression through density gradients via schlieren imaging. Additionally, flow field measurements are quantified throughout the flow using simultaneous particle image velocimetry (PIV) and OH* chemiluminescence. The turbulence fluctuations and flame speeds are extracted from these measurements to identify the reactant conditions where flame-generated compression begins. Collectively, these simultaneous high-speed measurements provide detailed insight into the flame and flow field characteristics where the runaway process occurs. This work ultimately documents direct flow field measurements to extract the contribution of flame-generated turbulence on the turbulent deflagration to detonation transition process.  相似文献   

17.
A unique burner was constructed to experimentally realize a one-dimensional unstrained planar non-premixed flame, previously considered only in idealized theoretical models. One reactant, the fuel mixture in the current experiments, is supplied through a porous plug at the bottom of the combustion chamber and flows vertically up towards the horizontal flame. The crux of the design is the introduction of the oxidizer from above in such a way that its diffusion against the upward product flow is essentially one-dimensional, i.e., uniform over the burner cross-section. This feature was implemented by introducing the oxidizer into the burner chamber from the top through an array of 625 closely spaced hypodermic needles, and allowing the hot products to escape vertically up through the space between the needles. Due to the injection of oxidizer through discrete tubes, a three-dimensional “injection layer” exists below the exit plane of the oxidizer supply tubes. Experimental evidence suggests that this layer is thin and that oxidizer is supplied to the flame by 1-D counterdiffusion, producing a nearly unstrained flame. To characterize the burner, flame position measurements were conducted for different compositions and flowrates of H2–CO2 and O2–CO2 mixtures. The measured flame locations are compared to an idealized one-dimensional model in which only diffusion of oxidizer against the product flow is considered. The potential of the new burner is demonstrated by a study of cellular structures forming near the extinction limit. Consistent with previous investigations, cellular instabilities are shown to become more prevalent as the initial mixture strength and/or the Damköhler number are decreased. As the extinction limit is approached, the number of cells was observed to decrease progressively.  相似文献   

18.
An imaging system for the measurement of three-dimensional (3D) scalar gradients in turbulent hydrocarbon flames is described. Combined line imaging of Raman scattering, Rayleigh scattering, and CO laser-induced fluorescence (LIF) allows for simultaneous single-shot line measurements of major species, temperature, mixture fraction, and a one-dimensional surrogate of scalar dissipation rate in hydrocarbon flames, while simultaneous use of two crossed, planar LIF measurements of OH allows for determination of instantaneous flame orientation. In this manner the full 3D scalar dissipation can be estimated in some regions of a turbulent flame on a single-shot basis.  相似文献   

19.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

20.
High-repetition rate laser Rayleigh scattering is used to study the temperature fluctuations, power spectra, gradients, and thermal dissipation rate characteristics of a non-premixed turbulent jet flame at a Reynolds number of 15,200. The radial temperature gradient is measured by a two-point technique, whereas the axial gradient is measured from the temperature time-series combined with Taylor’s hypothesis. The temperature power spectra along the jet centerline exhibit only a small inertial subrange, probably because of the low local Reynolds number (Reδ ≈ 2000), although a larger inertial subrange is present in the spectra at off-centerline locations. Scaling the frequency by the estimated Batchelor frequency improves the collapse of the dissipation region of the spectra, but this collapse is not as good as is obtained in non-reacting jets. Probability density functions of the thermal dissipation are shown to deviate from lognormal in the low-dissipation portion of the distribution when only one component of the gradient is used. In contrast, nearly log-normal distributions are obtained along the centerline when both axial and radial components are included, even for locations where the axial gradient is not resolved. The thermal dissipation PDFs measured off the centerline deviate from log-normal owing to large-scale intermittency. At one-half the visible flame length, the radial profile of the mean thermal dissipation exhibits a peak off the centerline, whereas farther downstream the peak dissipation occurs on the centerline. The mean thermal dissipation on centerline is observed to increase linearly with downstream distance, reach a peak at the location of maximum mean centerline temperature, and then decrease for farther downstream locations. Many of these observed trends are not consistent with equivalent non-reacting turbulent jet measurements, and thus indicate the importance of understanding how heat release modifies the turbulence structure of jet flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号