首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) is a promising process to mitigate the environmental issues caused by CO2, as well as to produce valuable multicarbon (C2+) products. Significant progresses have been made to explore highly efficient Cu-based electrocatalysts for CO2RR in recent years. Adding organic molecules into electrocatalytic systems can tune the CO2 interaction with the electrocatalysts for CO2RR, therefore, the final C2+ products, which are not solely achieved by inorganic modification. In this review, we will summarize the recent progress of the organic molecules participation in CO2 electroreduction to C2+ products on Cu-based electrocatalysts. The applied organic molecules are reviewed based on the heteroatoms (N and S), with the emphasis on their roles in activity and selectivity toward C2+ products. A perspective on the application of organic molecules for efficient and selective CO2RR has been provided.  相似文献   

2.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer was deposited by galvanic displacement of a Cu monolayer deposited at underpotentials. The mass activity of all the three Pt monolayer electrocatalysts investigated, viz., Pt/Au/Ni, Pt/Pd/Co, and Pt/Pt/Co, is more than order of magnitude higher than that of a state-of-the-art commercial Pt/C electrocatalyst. Geometric effects in the Pt monolayer and the effects of PtOH coverage, revealed by electrochemical data, X-ray diffraction, and X-ray absorption spectroscopy data, appear to be the source of the enhanced catalytic activity. Our results demonstrated that high-activity electrocatalysts can be devised that contain only a fractional amount of Pt and a very small amount of another noble metal.  相似文献   

3.
We have synthesized a new class of electrocatalysts for the O2 reduction reaction, consisting of a mixed monolayer of Pt and another late transition metal (Ir, Ru, Rh, Re, or Os) deposited on a Pd(111) single crystal or on carbon-supported Pd nanoparticles. Several of these mixed monolayer electrocatalysts exhibited very high activity and increased stability of Pt against oxidation, as well as a 20-fold increase in a Pt mass-specific activity, compared with state-of-the-art all-Pt electrocatalysts. Their superior activity and stability reflect a low OH coverage on Pt, caused by the lateral repulsion between the OH adsorbed on Pt and the OH or O adsorbed on neighboring, other than Pt, late transition metal atoms. The origin of this effect was identified through a combination of experimental and theoretical methods, employing electrochemical techniques, in situ X-ray absorption spectroscopy, and periodic, self-consistent density functional theory calculations. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance. Our studies suggest a new way of synthesizing improved ORR catalysts through the modification and control of the surface reactivity of Pt-based mixed monolayers supported on transition metals other than Pt. In addition to improving the ORR catalysts, co-depositing oxophilic metals may be a promising possibility for improving a variety of other catalysts.  相似文献   

4.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

5.
Using a combination of periodic, self-consistent, density functional theory (DFT) calculations and CO-stripping voltammetry experiments, we have designed a new class of Pt-M bimetallic monolayer catalysts supported on a non-Pt metal, which exhibit improved stability against CO poisoning and might be suitable for proton-exchange membrane fuel cell anodes. These surfaces help in reducing the overpotential associated with anodic CO oxidation and minimize the amount of Pt used, thereby reducing materials cost. DFT calculations predict highly repulsive interactions between adsorbed CO molecules on these surfaces, leading to weaker binding and lower coverage of CO than on pure Pt, which in turn facilitates oxidative removal of CO from these catalytic surfaces.  相似文献   

6.
Electrochemical nitrogen fixation under ambient conditions is promising for sustainable ammonia production but is hampered by high reaction barrier and strong competition from hydrogen evolution, leading to low specificity and faradaic efficiency with existing catalysts. Here we describe the activation of MoS2 in molten sodium that leads to simultaneous formation of a sulfur vacancy-rich heterostructured 1T/2H-MoSx monolayer via reduction and phase transformation. The resultant catalyst exhibits intrinsic activities for electrocatalytic N2-to-NH3 conversion, delivering a faradaic efficiency of 20.5% and an average NH3 rate of 93.2 μg h−1 mgcat−1. The interfacial heterojunctions with sulfur vacancies function synergistically to increase electron localization for locking up nitrogen and suppressing proton recombination. The 1T phase facilitates H–OH dissociation, with S serving as H-shuttling sites and to stabilize . The subsequently couple with nearby N2 and NHx intermediates bound at Mo sites, thus greatly promoting the activity of the catalyst. First-principles calculations revealed that the heterojunction with sulfur vacancies effectively lowered the energy barrier in the potential-determining step for nitrogen reduction, and, in combination with operando spectroscopic analysis, validated the associative electrochemical nitrogen reduction pathway. This work provides new insights on manipulating chalcogenide vacancies and phase junctions for preparing monolayered MoS2 with unique catalytic properties.

We describe the activation of MoS2 in molten sodium that leads to the simultaneous formation of a sulfur vacancy-rich heterostructured 1T/2H-MoSx monolayer electrocatalyst via reduction and phase transformation.  相似文献   

7.
Bimetallic Cu-In hybrid electrocatalysts are promising noble metal-free catalysts for selective electrochem-ical CO2 reduction reaction (ECO2RR).Most reports sh...  相似文献   

8.
9.
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle’s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24, 2007.  相似文献   

10.
Heterogeneous Ni–N–C single-atom catalysts (SACs) have attracted great research interest regarding their capability in facilitating the CO2 reduction reaction (CO2RR), with CO accounting for the major product. However, the fundamental nature of their active Ni sites remains controversial, since the typically proposed pyridinic-type Ni configurations are inactive, display low selectivity, and/or possess an unfavorable formation energy. Herein, we present a constant-potential first-principles and microkinetic model to study the CO2RR at a solid–water interface, which shows that the electrode potential is crucial for governing CO2 activation. A formation energy analysis on several NiNxC4−x (x = 1–4) moieties indicates that the predominant Ni moieties of Ni–N–C SACs are expected to have a formula of NiN4. After determining the potential-dependent thermodynamic and kinetic energy of these Ni moieties, we discover that the energetically favorable pyrrolic-type NiN4 moiety displays high activity for facilitating the selective CO2RR over the competing H2 evolution. Moreover, model polarization curves and Tafel analysis results exhibit reasonable agreement with existing experimental data. This work highlights the intrinsic tetrapyrrolic coordination of Ni for facilitating the CO2RR and offers practical guidance for the rational improvement of SACs, and this model can be expanded to explore mechanisms of other electrocatalysis in aqueous solutions.

A constant-potential first-principles and microkinetic model is developed to uncover the nature of heterogeneous Ni–N–C catalysts. It highlights the crucial role of a pyrrolic-type NiN4 moiety in electrochemical CO2 reduction.  相似文献   

11.
The electroreduction of CO2(CO2RR) into value-added chemicals is a sustainable strategy for mitigating global warming and managing the global carbon balance. However, developing an efficient and selective catalyst is still the central challenge. Here, we developed a simple two-step pyrolysis method to confine low-valent Ni-based nanoparticles within nitrogen-doped carbon(Ni-NC). As a result, such Ni-based nanoparticles can effectively reduce CO2 to CO, with a max...  相似文献   

12.
刘可  杨雪  张天景  王春  杨贵屏  杨万亮  安燕 《化学通报》2023,86(11):1293-1305
近年来,随着温室效应即全球变暖引发的环境问题越来越严峻,因此,CO2转化与再生引起了科学界的广泛关注,其中备受关注的是电催化CO2还原。而二维材料电催化剂可以将CO2还原为高附加值的多碳化合物,但催化剂的合成设计以及理论研究有待更多的研究。从发现石墨烯开始,二维材料的其他超薄层状结构的广泛研究逐渐出现。本文重点综述了石墨烯、MXenes、金属氧化物、二维MOFs和过渡金属硫族化合物等二维材料的构建以及其CO2还原电催化技术应用方面的最新进展,并简要的介绍了二维材料的分类和制备方法。讨论了电催化CO2还原的基本原理以及反应途径。指出了二维材料电催化剂面临的机遇和挑战,旨在对二维材料电催化剂的合成以及应用提供一些新的思路。  相似文献   

13.
Metal-organic frameworks(MOFs) as a type of crystalline heterogeneous catalysts have shown potential application in photocatalytic CO2 reduction.However,MOF catalysts with high efficiency and selectivity are still in pursuit.Herein,by a bimetallic strategy,the catalytic performance of a Co-MOF for photocatalytic CO2 reduction was enhanced.Specifically,the Co-MOF based on 4,5-dicarboxylic acid(H3 IDC) and4,4’-bipydine(4,4’-bpy) can catalyze CO2 reductio...  相似文献   

14.
《中国化学快报》2023,34(12):108634
Transition metal and nitrogen co-doped carbons (M-N-C) have proven to be promising catalysts for CO2 electroreduction into CO because of the high activity and selectivity. Effective enrichment of the active transition metal coordinated nitrogen sites is desirable but is challenging for a practical volumetric productivity. Herein, we report four kinds of model electrocatalysts to unveil this issue, which include the NC structures with surface N-functionalities, Ni-N-C_I with one layer of surface Ni-N3C sites, NC@Ni-N-C_I with surface N-functionalities and underneath Ni-N3C sites as well as Ni-N-C_II with doubled surface Ni-N3C sites. The X-ray absorption spectroscopy indicates the coordination configuration of Ni-N3C. For NC catalysts, when N-doping level increased from 3.5 at% to 8.4 at%, the CO partial current density increased from below 0.1 mA/cm2 to 3 mA/cm2. Introducing one layer of Ni-N3C onto the NC structures leads to a 54 times higher CO partial current density than that of NC, in the meantime the FECO is 66 times higher. Furthermore, doubling the density of surface Ni-N3C sites by a layer-by-layer method doubles the CO partial current density (jCO), indicating its potential to achieve a high density of active coordinated sites and current densities.  相似文献   

15.
Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu–X–Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm−2 in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm−2. Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.

Trimetallic Cu10La1Cs1 catalysts prepared via a one-step co-electrodeposition strategy can act as a robust electrocatalyst for CO2RR to C2H4.  相似文献   

16.
氧还原(ORR)可分为4e~-体系和2e~-体系.在燃料电池中,O_2经过4e~-体系直接生成H_2O,经过2e~-过程直接产生H_2O_2,H_2O_2可以产生电能,是替代石油或氢气的理想能源载体,而且H_2O_2在实际生活生产中也具有广泛应用.但是,燃料电池中2e~-体系氧还原反应非常缓慢,故开发高效、低成本的氧还原催化剂已成为近年来的研究热点.本文主要综述了近些年氧还原2e~-体系电催化剂的研究进展,并对它们的选择性、活性和稳定性进行深入探讨.最后,对电化学制备H_2O_2的最新进展作了简要总结,并对今后的研究挑战作了展望.  相似文献   

17.
18.
碳酸钠对选择性非催化还原反应影响的研究   总被引:2,自引:0,他引:2  
在管式石英反应器中研究了Na2CO3对氨水-SNCR以及尿素-SNCR的影响。结果表明,添加少量的Na2CO3可以明显提高低温区域的脱硝效率,同时使NH3泄漏曲线明显往低温方向偏移,尿素-SNCR过程尾部HNCO泄漏明显降低;添加少量的Na2CO3可以明显降低N2O排放,这在尿素-SNCR过程中尤为明显;Na2CO3的添加明显提高了尿素热解气中HNCO向NH3的转化率,这是尿素-SNCR过程中HNCO泄漏可以显著降低,N2O排放得以大量减少的主要原因;Na2CO3添加量相同时,较低氨氮比工况的脱硝效率促进作用相对更为明显,较高氨氮比工况脱硝温度窗口宽度的扩展作用相对更为有效,而较低氧含量工况的脱硝效率促进效果也相对更为显著。  相似文献   

19.
20.
Lv  Haowei  Sa  Rongjian  Li  Pengyue  Yuan  Daqiang  Wang  Xinchen  Wang  Ruihu 《中国科学:化学(英文版)》2020,63(9):1289-1294
The visible-light-driven photocatalytic CO_2 reduction with high efficiency is highly desirable but challenging. Herein, we present porphyrin-tetraphenylethene-based covalent organic frameworks(MP-TPE-COF, where M=H_2, Co and Ni;TPE=4,4′,4″,4?-(ethane-1,1,2,2-tetrayl) tetrabenzaldehyde; COF=covalent organic framework) as ideal platforms for understanding photocatalytic CO_2 reduction at molecular level. Experimental and theoretical investigations have demonstrated crucial roles of metalloporphyrin units in selective adsorption, activation and conversion of CO_2 as well as in the separation of charge carriers and electron transfer, thus allowing for flexible modulation of photocatalytic activity and selectivity. Co P-TPE-COF exhibits high CO evolution rate of 2,414 μmol g~(-1) h~(-1) with the selectivity of 61% over H_2 generation under visible-light irradiation, while Ni P-TPE-COF provides CO evolution rate of 525 μmol g~(-1) h~(-1) and 93% selectivity with superior durability.Moreover, the photocatalytic system is feasible for the simulated flue gas, which provides CO evolution rate of 386 μmol g~(-1) h~(-1) and selectivity of 77%. This work provides in-depth insight into the structure-activity relationships toward the activation and photoreduction of CO_2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号