首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re ?? transition model coupled with the SST k?ω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.  相似文献   

2.
The supersonic M = 5 flow past slender elliptic cones with the semi-vertex angle in the plane of the major semi-axis ? c = 4° and an isothermal surface is investigated under the assumption of the flow symmetry. Calculations on the basis of the time-dependent three-dimensional Navier-Stokes and Reynolds equations are carried out on the Reynolds number and angle of attack ranges 104 ≤ Re ≤ 108 and 0 ≤ α ≤ 15° for cones with ellipticity coefficients 1/32 ≤ δ= b/a ≤ 1. The effect of the relevant parameters of the problem on the flowfield structure and the aerodynamic characteristics of the cones is demonstrated.  相似文献   

3.
On the basis of an asymptotic analysis of the Navier-Stokes system of equations for large Reynolds numbers (Re → ∞), the plane incompressible fluid flow near a surface having a convex corner with a small angle 2θ* is investigated. It is shown that for θ* = O(Re?1/4), in addition to the known solution that describes a separated flow completely localized in a thin “viscous” sublayer of the interaction region near the corner point, another solution corresponding to a flow with a developed separation zone is possible. For θ 0 = Re1/4 θ* = O(1), the longitudinal dimension of this zone varies from finite values up to values of the order of Re?3/8. The nonuniqueness of the solution is established on a certain range of variation of the parameter θ 0. The dependence of the drag coefficient on the angle θ* is found.  相似文献   

4.
The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec =?60,000, an angle of attack α =?4° and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤?11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.  相似文献   

5.
Effects of synthetic jets on the wake of a D-shaped cylinder is investigated experimentally at a Reynolds number ReH= 47,000, based on incoming free-stream velocity and the cylinder height (H). The synthetic jets are introduced immediately from the upper and lower trailing edges of the cylinder. The upper and lower synthetic jets are operated in an in-phase or anti-phase mode, and at a momentum ratio Cμ= 1.0% and perturbation frequency StA= 0.11 ?0.37. The cylinder wake with perturbation is examined in detail and compared with that without, based on smoke-wire flow visualization, pressure transducer and hotwire rake measurements, and data analyses of spectra, tempo-spatial cross-correlation and proper orthogonal decomposition (POD). Large-scale vortical structures in the cylinder wake are significantly modified by the synthetic jets perturbations, exhibiting symmetric or asymmetric patterns, depending on the perturbation frequency and phase relationship of the synthetic jets. These observations are internally correlated with the drag force variations.  相似文献   

6.
In this work we study the turbulence modulation in a viscosity-stratified two-phase flow using Direct Numerical Simulation (DNS) of turbulence and the Phase Field Method (PFM) to simulate the interfacial phenomena. Specifically we consider the case of two immiscible fluid layers driven in a closed rectangular channel by an imposed mean pressure gradient. The present problem, which may mimic the behaviour of an oil flowing under a thin layer of different oil, thickness ratio h2/h1 =?9, is described by three main flow parameters: the shear Reynolds number Re τ (which quantifies the importance of inertia compared to viscous effects), the Weber number We (which quantifies surface tension effects) and the viscosity ratio λ = ν1/ν2 between the two fluids. For this first study, the density ratio of the two fluid layers is the same (ρ2 = ρ1), we keep Re τ and We constant, but we consider three different values for the viscosity ratio: λ =?1, λ =?0.875 and λ =?0.75. Compared to a single phase flow at the same shear Reynolds number (Re τ =?100), in the two phase flow case we observe a decrease of the wall-shear stress and a strong turbulence modulation in particular in the proximity of the interface. Interestingly, we observe that the modulation of turbulence by the liquid-liquid interface extends up to the top wall (i.e. the closest to the interface) and produces local shear stress inversions and flow recirculation regions. The observed results depend primarily on the interface deformability and on the viscosity ratio between the two fluids (λ).  相似文献   

7.
Based on the finite volume method, the flow past a two-dimensional circular cylinder at a critical Reynolds number (Re = 8.5 × 105) was simulated using the Navier-Stokes equations and the γ-Reθ transition model coupled with the SST k ? ω turbulence model (hereinafter abbreviated as γ-Reθ model). Considering the effect of free-stream turbulence intensity decay, the SST k ? ω turbulence model was modified according to the ambient source term method proposed by Spalart and Rumsey, and then the modified SST k ? ω turbulence model is coupled with the γ-Reθ transition model (hereinafter abbreviated as γ-Reθ-SR model). The flow past a circular cylinder at different inlet turbulence intensities were simulated by the γ-Reθ-SR model. At last, the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers were each simulated by the γ-Reθ-SR model, and the three flow states were analyzed. It was found that compared with the SST k ? ω turbulence model, the γ-Reθ model could simulate the transition of laminar to turbulent, resulting in better consistency with experimental result. Compared with the γ-Reθ model, for relatively high inlet turbulence intensities, the γ-Reθ-SR model could better simulate the flow past a circular cylinder; however the improvement almost diminished for relatively low inlet turbulence intensities The γ-Reθ-SR model could well simulate the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers.  相似文献   

8.
A two-dimensional flow of a non-Newtonian power-law fluid directed normally to a horizontal cylinder with a square cross section is considered in the present paper. The problem is investigated numerically with a finite volume method by using the commercial code Ansys Fluent with a very large computational domain so that the flow could be considered unbounded. The investigation covers the power-law index from 0.1 to 2.0 and the Reynolds number range from 0.001 to 45.000. It is found that the drag coefficient for low Reynolds numbers and low power-law index (n ≤ 0.5) obeys the relationship CD = A/Re. An equation for the quantity A as a function of the power-law index is derived. The drag coefficient becomes almost independent of the power-law index at high Reynolds numbers and the wake length changes nonlinearly with the Reynolds number and power-law index.  相似文献   

9.
The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.  相似文献   

10.
In the slow flows of a strongly and nonuniformly heated gas, in the continuum regime (Kn → 0) thermal stresses may be present. The theory of slow nonisothermal continuum gas flows with account for thermal stresses was developed in 1969–1974. The action of the thermal stresses on the gas results in certain paradoxical effects, including the reversal of the direction of the force exerted on a spherical particle in Stokes flow. The propulsion force effect is manifested at large but finite temperature differences between the particle and the gas. This study is devoted to the thermal-stress effect on the drag of a strongly heated spherical particle traveling slowly in a gas for small Knudsen numbers (M ~ Kn → 0), small but finite Reynolds numbers (Re ≤ 1), a linear temperature dependence of the transport coefficients µ ∝ T, and large but finite temperature differences ((T w ? T )/T M8 ~ 1). Two different systems of equations are solved numerically: the simplified Navier-Stokes equations and the modified Navier-Stokes equations with account for the thermal stresses.  相似文献   

11.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

12.
In this work we study the long time inviscid limit of the two dimensional Navier–Stokes equations near the periodic Couette flow. In particular, we confirm at the nonlinear level the qualitative behavior predicted by Kelvin’s 1887 linear analysis. At high Reynolds number Re, we prove that the solution behaves qualitatively like two dimensional Euler for times \({{t \lesssim Re^{1/3}}}\), and in particular exhibits inviscid damping (for example the vorticity weakly approaches a shear flow). For times \({{t \gtrsim Re^{1/3}}}\), which is sooner than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise dependence of the vorticity is rapidly eliminated by an enhanced dissipation effect. Afterwards, the remaining shear flow decays on very long time scales \({{t \gtrsim Re}}\) back to the Couette flow. When properly defined, the dissipative length-scale in this setting is \({{\ell_D \sim Re^{-1/3}}}\), larger than the scale \({{\ell_D \sim Re^{-1/2}}}\) predicted in classical Batchelor–Kraichnan two dimensional turbulence theory. The class of initial data we study is the sum of a sufficiently smooth function and a small (with respect to Re?1) L2 function.  相似文献   

13.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

14.
We study turbulent plane Couette-Poiseuille (CP) flows in which the conditions (relative wall velocity ΔU w ≡ 2U w , pressure gradient dP/dx and viscosity ν) are adjusted to produce zero mean skin friction on one of the walls, denoted by APG for adverse pressure gradient. The other wall, FPG for favorable pressure gradient, provides the friction velocity u τ , and h is the half-height of the channel. This leads to a one-parameter family of one-dimensional flows of varying Reynolds number Re ≡ U w h/ν. We apply three codes, and cover three Reynolds numbers stepping by a factor of two each time. The agreement between codes is very good, and the Reynolds-number range is sizable. The theoretical questions revolve around Reynolds-number independence in both the core region (free of local viscous effects) and the two wall regions. The core region follows Townsend’s hypothesis of universal behavior for the velocity and shear stress, when they are normalized with u τ and h; on the other hand universality is not observed for all the Reynolds stresses, any more than it is in Poiseuille flow or boundary layers. The FPG wall region obeys the classical law of the wall, again for velocity and shear stress. For the APG wall region, Stratford conjectured universal behavior when normalized with the pressure gradient, leading to a square-root law for the velocity. The literature, also covering other flows with zero skin friction, is ambiguous. Our results are very consistent with both of Stratford’s conjectures, suggesting that at least in this idealized flow turbulence theory is successful like it was for the classical logarithmic law of the wall. We appear to know the constants of the law within a 10% bracket. On the other hand, that again does not extend to Reynolds stresses other than the shear stress, but these stresses are passive in the momentum equation.  相似文献   

15.
Turbulent flow over variably-shaped rough walls, characterized by either a regular or a random arrangement of axisymmetric roughness elements in an open channel flow configuration, is investigated computationally within a VLES (Very Large Eddy Simulation) framework by utilizing a volumetric forcing-based roughness model. The prime objective of the present work is to assess the roughness model’s capability to predict mean velocities and turbulent intensities in conjunction with this recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model. The friction velocity-based Reynolds number is in the range Reτ =?460 ? 500. A non-dimensional drag function accounting for the shape of the roughness elements is introduced and evaluated based on the results of complementary direct numerical simulations (DNS). The dynamics of the residual motion of the presently adopted VLES methodology is described by an appropriately modified elliptic-relaxation-based ζ ? f (\(\zeta =\overline {v^{2}}/k\)) RANS model.  相似文献   

16.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

17.
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η≡η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η∝ R_λ~(1.39) obtained from the numerical data.  相似文献   

18.
In this article, a numerical investigation is performed on flow and heat transfer of confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as the working fluid. Two-dimensional turbulent flow is considered and a constant temperature is applied on the impingement surface. The k ? ω turbulence model is used for the turbulence computations. Two-phase mixture model is implemented to study such a flow field. The governing equations are solved using the finite volume method. In order to consider the effect of obstacle angle on temperature fields in the channel, the numerical simulations were performed for different obstacle angles of 0° ? 60°. Also different geometrical parameters, volume fractions and Reynolds numbers have been considered to study the behavior of the system in terms of stagnation point, average and local Nusselt number and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet- impingement surface distance ratio (H/W) and volume fraction. The maximum Nusselt number occurs at the stagnation point with the highest values at about H/W = 1. Increasing obstacle angle, from 15° to 60°, enhances the heat transfer rate. It was also revealed that the minimum value of average Nusselt number occurs in higher H/W ratios with decreasing the channel length.  相似文献   

19.
The flow over a porous laminated flat plate is investigated from a flow control perspective through experiments and computations. A square array of circular cylinders is used to model the porous lamination. We determine the velocities at the fluid–porous interface by solving the two-dimensional Navier–Stokes and the continuity equations using a staggered flow solver and using LDV in experiments. The control parameters for the porous region are porosity, \(\phi \) and Reynolds number, Re, based on the diameter of the circular cylinders used to model the porous lamination. Computations are conducted for \(0.4< \phi < 0.9\) and \(25< Re < 1000\), and the experiments are conducted for \(\phi = 0.65\) and 0.8 at \(Re \approx 391,\ 497\) and 803. The permeability of the porous lamination is observed to induce a slip velocity at the interface, effectively making it a slip wall. The slip velocity is seen to be increasing functions of \(\phi \) and Re. For higher porosities at higher Re, the slip velocity shows non-uniform and unsteady behavior and a breakdown Reynolds number is defined based on this characteristic. A map demarcating the two regimes of flow is drawn from the computational and experimental data. We observe that the boundary layer over the porous lamination is thinner than the Blasius boundary layer and the shear stress is higher at locations over the porous lamination. We note that the porous lamination helps maintain a favorable pressure gradient at the interface which delays separation. The suitable range of porosities for effective passive separation control is deduced from the results.  相似文献   

20.
Hydrodynamic properties of squirmer swimming in power-law fluid near a wall considering the interaction between squirmer and wall are numerically studied with an immersed boundary-lattice Boltzmann method. The power-law index, Reynolds number, initial orientation angle of squirmer, and initial distance of squirmer from the wall are all taken into account to investigate the swimming characteristics for pusher (β?<?0), neutral squirmer (β?=?0), and puller (β?>?0) (three kinds of swimmer types) near the no-slip boundary. Four new kinds of swimming modes are found. Results show that, for the pushers and pullers, the wall displays an increasing attraction with increasing power-law index n, which differs from the neutral squirmer who always departs from the wall after the first collision with the wall. Both the initial orientation angle and initial distance from the wall only affect the moving situations rather than the moving modes of the squirmers. However, the squirmers depart from the wall as the Reynolds number increases and chaotic orbits appear for some squirmers at Re?=?5. Several typical flow fields are analyzed and the power consumption and torque for different kinds of flows are also studied. It is found that, as the absolute value of β increases, the power consumption generally increases in shear-thinning (n?=?0.4), Newtonian (n?=?1), and shear-thickening (n?=?1.6) fluids. Moreover, the pushers (β?<?0) and the pullers (β?>?0) expend almost the same power if the absolute value of β remains the same. In addition, the power consumption of the squirmers is highly dependent on the power-law index n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号