首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein glycosylation analysis is important for elucidating protein function and molecular mechanisms in various biological processes. We previously developed a glycan analysis method using a 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix (3-AQ/CHCA LM) and applied it to the quantitative glycan profiling of glycoproteins. However, information concerning glycosylation sites is lost; glycopeptide analysis is therefore required to identify the glycosylation sites in glycoproteins. Human epidermal growth factor receptor 2 (HER2) is a glycoprotein that plays a role in the regulation of cell proliferation, differentiation, and migration. Several reports have described the structure of HER2, but the structures of N-glycans attached to this protein remain to be fully elucidated. In this study, 3-AQ/CHCA LM was applied to tryptic digests of HER2 to reveal its N-glycosylation state and to evaluate the utility of this LM in characterizing glycopeptides. Peptide sequence coverage was considerably improved compared to analysis of HER2 using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid. Most of the peaks observed using only this LM were localized at the inner or outer regions of sample spots. Furthermore, five of the peptide peaks that were enriched within the inner region were confirmed to be glycosylated by MS/MS analysis. Three glycosylation sites were identified and their glycan structures were elucidated. The reduction in sample complexity by on-target separation allowed for higher sequence coverage, resulting in effective detection and characterization of glycopeptides. In conclusion, these results demonstrate that MS-based glycoprotein analysis using 3-AQ/CHCA is an effective method to identify glycosylation sites in proteins and to elucidate the glycan structures of glycoproteins in complex samples.  相似文献   

2.
Mass spectrometry (MS) of large molecules such as proteins and oligosaccharides has not been employed in clinical practices, while that of small metabolites is widely used for the screening and diagnosis of various congenital diseases. Congenital disorders of glycosylation (CDG) is a newly recognized group of diseases derived from defects in the biosynthetic pathway of protein glycosylation and the patients are never decisively diagnosed unless the glycoprotein molecules are analyzed. We have constructed a diagnostic system where MS of glycoproteins and glycopeptides identifies abnormalities in their glycan moieties. This program is anticipated to reveal the prevalence of CDG and to demonstrate the essential role of MS in the emerging field of medicine, disease glycomics and glycoproteomics.  相似文献   

3.
Recently, we reported the development of sugar-assisted ligation (SAL), a novel peptide ligation method for the synthesis of glycopeptides. After screening a large number of glycoprotein sequences in a glycoprotein database, it became evident that a large proportion (approximately 53%) of O-glycosylation sites contain amino acid residues that will not undergo SAL reactions. To overcome these inherent limitations and broaden the scope of the method we report here the development of an extended SAL method. Glycopeptides containing up to six amino acid extensions N-terminal to the glycosylated residue were shown to facilitate ligation reactions with peptide thioesters, and these products were isolated in good yields. Kinetic analysis was used to show that as glycopeptides were extended by further amino acid residues, ligation reactions became slower. This finding was rationalized by molecular dynamics simulations using AMBER9. These studies suggested a general trend whereby the proximal distance between the reactive sites of the thioester intermediate (the N-terminal amine and the carbonyl carbon of the thioester) increased as glycopeptides were extended, thus slowing down the ligation rate. Each of the extended SAL methods showed broad tolerance to a number of different amino acid combinations at the ligation junction. Re-evaluation of the glycoprotein database suggested that 95% of the O-linked glycosylation sites can now be utilized to facilitate SAL or extended SAL reactions. As such, this method represents an extremely valuable tool for the synthesis of naturally occurring glycopeptides and glycoproteins. To demonstrate the applicability of the method, extended SAL was successfully implemented in the synthesis of the starting unit of the cancer-associated MUC1 glycoprotein.  相似文献   

4.
We developed an efficient and convenient strategy for protein identification and glycosylation analysis of a small amount of unknown glycoprotein in a biological sample. The procedure involves isolation of proteins by electrophoresis and mass spectrometric peptide/glycopeptide mapping by LC/ion trap mass spectrometer. For the complete glycosylation analysis, proteins were extracted in intact form from the gel, and proteinase-digested glycoproteins were then subjected to LC/multistage tandem MS (MSn) incorporating a full mass scan, in-source collision-induced dissociation (CID), and data-dependent MSn. The glycopeptides were localized in the peptide/glycopeptide map by using oxonium ions such as HexNAc+ and NeuAc+, generated by in-source CID, and neutral loss by CID-MS/MS. We conducted the search analysis for the glycopeptide identification using search parameters containing a possible glycosylation at the Asn residue with N-acetylglucosamine (203 Da). We were able to identify the glycopeptides resulting from predictable digestion with proteinase. The glycopeptides caused by irregular cleavages were not identified by the database search analysis, but their elution positions were localized using oxonium ions produced by in-source CID, and neutral loss by the data-dependent MSn. Then, all glycopeptides could be identified based on the product ion spectra which were sorted from data-dependent CID-MSn spectra acquired around localized positions. Using this strategy, we successfully elucidated site-specific glycosylation of Thy-1, glycosylphosphatidylinositol (GPI)-anchored proteins glycosylated at Asn23, 74, and 98, and at Cys111. High-mannose-type, complex-type, and hybrid-type oligosaccharides were all found to be attached to Asn23, 74 and 98, and four GPI structures could be characterized. Our method is simple, rapid and useful for the characterization of unknown glycoproteins in a complex mixture of proteins.  相似文献   

5.
Protein glycosylation has a major influence on functions of proteins. Studies have shown that aberrations in glycosylation are indicative of disease conditions. This has prompted major research activities for comparative studies of glycoproteins in biological samples. Multiple reaction monitoring (MRM) is a highly sensitive technique which has been recently explored for quantitative proteomics. In this work, MRM was adopted for quantification of glycopeptides derived from both model glycoproteins and depleted human blood serum using glycan oxonium ions as transitions. The utilization of oxonium ions aids in identifying the different types of glycans bound to peptide backbones. MRM experiments were optimized by evaluating different parameters that have a major influence on quantification of glycopeptides, which include MRM time segments, number of transitions, and normalized collision energies. The results indicate that oxonium ions could be adopted for the characterization and quantification of glycopeptides in general, eliminating the need to select specific transitions for individual precursor ions. Also, the specificity increased with the number of transitions and a more sensitive analysis can be obtained by providing specific time segments. This approach can be applied to comparative and quantitative studies of glycopeptides in biological samples as illustrated for the case of depleted blood serum sample. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
陈刚  白泉  耿信笃 《色谱》2006,24(5):425-431
通过对硅胶基质进行化学改性键合伴刀豆球蛋白(Con A),制备了对糖蛋白具有特异亲和作用的亲和色谱固定相;该固定相非特异性吸附弱,对于糖蛋白和糖肽的分离效果良好。对亲和色谱的分离条件进行了优化,以标准糖蛋白核糖核酸酶B(RNase B)为模型,对其进行了纯化;用糖苷酶切除糖链,并对切除糖链前后的RNase B用胰蛋白酶酶解;用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)对亲和色谱分离得到的糖蛋白、糖链及糖肽进行了分析,确定了RNase B的一级结构、糖含量、糖基化位点及糖连接方式。该方法快速准确,适于糖蛋白和糖肽的分离表征。将其应用于血清中糖蛋白及酶解后血清中糖肽的分离富集,取得了很好的效果。  相似文献   

7.
We have previously shown sugar-assisted ligation (SAL) to be a useful method for the convergent construction of glycopeptides. However to date SAL has only been carried out on systems where the thiol auxiliary is attached to a monosaccharide. For SAL to be truly applicable to the construction of fully elaborated glycopeptides and glycoproteins, it must be possible to carry out the reaction when the thiol auxiliary is attached to more elaborate sugars, as these are frequently what are observed in nature. Here we examine the effects of glycosylation at C-3, C-4, and C-6 of the C-2 auxiliary-containing glycan. Model glycopeptides where synthesized chemoenzymatically and reacted with peptide thioesters used in our previous work. These studies reveal that SAL is sensitive to extended glycosylation on the auxiliary-containing sugar. While it is possible to carry out SAL with extended glycosylation at C-4 and C-6, the presence of glycosylation at C-3 prevents the ligation from occurring. Additionally, with glycosylation at C-4 the ligation efficiency is affected by the identity of the N-terminal AA, while the nature of the C-terminal residue of the peptide thioester does not appear to affect ligation efficiency. These studies provide useful guidelines in deciding when it is appropriate to use SAL in the synthesis of complex glycopeptides and glycoproteins and how to choose ligation junctions for optimal yield.  相似文献   

8.
Protein glycosylation has a significant medical importance as changes in glycosylation patterns have been associated with a number of diseases. Therefore, monitoring potential changes in glycan profiles, and the microheterogeneities associated with glycosylation sites, are becoming increasingly important in the search for disease biomarkers. Highly efficient separations and sensitive methods must be developed to effectively monitor changes in the glycoproteome. These methods must not discriminate against hydrophobic or hydrophilic analytes. The use of activated graphitized carbon as a desalting media and a stationary phase for the purification and the separation of glycans, and as a stationary phase for the separation of small glycopeptides, has previously been reported. Here, we describe the use of activated graphitized carbon as a stationary phase for the separation of hydrophilic tryptic glycopeptides, employing a chip‐based liquid chromatographic (LC) system. The capabilities of both activated graphitized carbon and C18 LC chips for the characterization of the glycopeptides appeared to be comparable. Adequate retention time reproducibility was achieved for both packing types in the chip format. However, hydrophilic glycopeptides were preferentially retained on the activated graphitized carbon chip, thus allowing the identification of hydrophilic glycopeptides which were not effectively retained on C18 chips. On the other hand, hydrophobic glycopeptides were better retained on C18 chips. Characterization of the glycosylation sites of glycoproteins possessing both hydrophilic and hydrophobic glycopeptides is comprehensively achieved using both media. This is feasible considering the limited amount of sample required per analysis (<1 pmol). The performance of both media also appeared comparable when analyzing a four‐protein mixture. Similar sequence coverage and MASCOT ion scores were observed for all proteins when using either stationary phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Comprehensive glycoprotein characterization based on mass spectrometry (MS) is challenging because of low concentration of glycopeptides and suppression effect of abundant non-glycosylated peptides in MS. Therefore, it is vital to enrich glycopeptides before MS analysis. A new method was developed to selectively enrich glycopeptides from complex sample by coupling C18 fractionation with titanium dioxide (TiO(2)) enrichment. The new method allows to selectively enrich N-linked glycopeptides with various glycan forms and different sequence lengths. Compared with single TiO(2) method, the established method demonstrated higher glycopeptide selectivity and higher glycosylation heterogeneity coverage. Further application of this method to mixture of non-glycosylated protein and glycoprotein digests at different levels reveals the feasibility of enrichment of tryptic glycopeptides from simple proteomics samples.  相似文献   

10.
A MS‐based methodology has been developed for analysis of core‐fucosylated versus antennary‐fucosylated glycosites in glycoproteins. This procedure is applied to the glycoprotein alpha‐1‐antitrypsin (A1AT), which contains both core‐ and antennary‐fucosylated glycosites. The workflow involves digestion of intact glycoproteins into glycopeptides, followed by double digestion with sialidase and galactosidase. The resulting glycopeptides with truncated glycans were separated using an off‐line HILIC (hydrophilic interaction liquid chromatography) separation where multiple fractions were collected at various time intervals. The glycopeptides in each fraction were treated with PNGase F and then divided into halves. One half of the sample was applied for peptide identification while the other half was processed for glycan analysis by derivatizing with a meladrazine reagent followed by MS analysis. This procedure provided site‐specific identification of glycosylation sites and the ability to distinguish core fucosylation and antennary fucosylation via a double digestion and a mass profile scan. Both core and antennary fucosylation are shown to be present on various glycosites in A1AT.  相似文献   

11.
蛋白质的糖基化是最重要的翻译后修饰之一,与蛋白质结构和功能的关系密切。凝集素亲和色谱是蛋白质糖基化研究中很常用的工具,不同的凝集素可以对不同的单糖或寡糖有特异的富集作用。麦胚凝集素(WGA)由于其特异作用的糖型广泛存在而成为使用最多的凝集素之一。在本研究中,发现将WGA用于糖肽亲和富集会导致部分肽段的降解,从而导致后续的肽段序列分析的失败。本文用4种标准蛋白质对这种现象进行了验证,结果表明肽段的降解可以发生在多个位点,其中较多地发生在酪氨酸、苯丙氨酸及亮氨酸的羧基端。这一结果提示:在糖蛋白质组研究中,如果应用WGA富集糖肽并采用质谱进行鉴定,则采用半酶切或非特异性酶切的检索策略更为合适。  相似文献   

12.
Dalpathado DS  Desaire H 《The Analyst》2008,133(6):731-738
Glycosylation is one of the most important post-translational modifications found in nature. Identifying and characterizing glycans is an important step in correlating glycosylation structure to the glycan's function, both in normal glycoproteins and those that are modified in a disease state. Glycans on a protein can be characterized by a variety of methods. This review focuses on the mass spectral analysis of glycopeptides, after subjecting the glycoprotein to proteolysis. This analytical approach is useful in characterizing glycan heterogeneity and correlating glycan compositions to their attachment sites on the protein. The information obtained from this approach can serve as the foundation for understanding how glycan compositions affect protein function, in both normal and aberrant glycoproteins.  相似文献   

13.
Rapid identification of glycosylation sites of glycoproteins is urgently needed in glycoproteomics study. In the present work, a rapid and simple method based on non-specific digestion of gel-separated glycoproteins and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry was described, which can efficiently identify the N-linked glycosylation sites. One-step in-gel digestion of Ribonuclease B (RNase B) by proteinase K was employed to generate glycopeptides with short and discrepant peptide composition. When compared with glycopeptides prepared by two-step in gel-digestion using trypsin-proteinase K or trypsin-pronase, the direct proteinase K treatment showed obvious superiority in both glycopeptide recovery and preparation simplicity. Most importantly, it helps to generate greater variety of glycopeptide series with rich information for glycosylation site identification. In addition, binary matrices 5-chloro-2-mercaptobenzothiazole (CMBT) /2,5-dihydroxybenzoic acid (DHB) were found to form homogeneous microcrystal on the target with the purified glycopeptides, leading to improved detection sensitivity. Thus, the present work provides an optimized solution to speed up the characterization of N-linked glycosylation sites in glycoproteins.  相似文献   

14.
A strategy is presented for comparative analysis of glycoproteins in which the variation of protein concentration, variation of glycosylation site occupancy and variation of glycoform profile can be determined. A comparative study was performed using stable isotope labeling of glycopeptides and peptides by formaldehyde-H2 and formaldehyde-D2 and analysis by ESI-MS analysis. The relative intensity of the nonglycosylated peptide provided information about protein concentration variation. Variation of the glycoform profile was obtained by comparing the glycoform profile of d0- and d4-dimethyl labeled glycopeptides. By knowing the variation of protein concentration and the variation of glycoform profile, the variation of glycosylation site occupancy could be calculated. The utility of the proposed strategy was demonstrated with ribonuclease B with different protein concentrations, different levels of glycosylation site occupancy and different glycoform profiles.  相似文献   

15.
生物体内蛋白质的糖基化修饰调控着细胞识别、细胞黏附和迁移以及免疫应答等多种生理过程,并与多种人类重大疾病的发生、发展密切相关。因此对蛋白质糖基化修饰的鉴定,不仅能够为生物学机理研究提供重要信息,对疾病诊断标志物和治疗靶标的发现也至关重要。然而在复杂生物体系中,大多数糖蛋白为低丰度蛋白质,其含量与现有质谱仪器的检测灵敏度之间存在较大差距,所以对含有不同糖型结构的糖蛋白进行全面/高效的富集,是实现高灵敏度糖蛋白鉴定的必由之路。凝集素富集作为一种有效的糖蛋白富集方法,已在糖蛋白质组学研究中得到了广泛的应用。针对现有凝集素功能化材料存在负载量偏低以及富集效率有限等问题,我们制备了两种以氧化石墨烯(GO)为载体的新型固定化凝集素,利用GO比表面积大,功能基团含量高,分散性、化学稳定性好等特点,实现了高负载量的凝集素固定(GO-ConA 2.073 mg/mg, RSD=1.0%; GO-WGA 1.908 mg/mg, RSD=0.14%)。同时考察了材料的可重复使用性与稳定性:每隔3天测一次同一GO-lectin材料对对应糖蛋白的富集效果,可以看出材料合成两周内富集效果都>200 μg/mg。将该GO-lectin成功应用于糖蛋白、糖肽的选择性富集,在糖蛋白质组学研究中体现出良好的应用潜力。  相似文献   

16.
《Chemistry & biology》1998,5(8):427-437
Background: Asparagine-linked glycosylation has the capacity to greatly influence the structure and function of glycoproteins. In most cases, however, it is unclear specifically how the carbohydrate moiety interacts with the protein to influence its conformation.Results: A series of glycopeptides based on the critical A285 glycosylation site of the hemagglutinin glycoprotein from influenza virus was used as a model system to study the effects of asparagine-linked glycosylation. Derivatization of this peptide with a family of short carbohydrates reveals that subtle changes in the structure of the carbohydrate have a dramatic impact on peptide conformation. Modification of the hemagglutinin glycopeptide with a truncated version of the native carbohydrate induces a β-turn structure similar to the structure found in the native protein. Replacement of the C2 and C2′ N-acetyl groups of the carbohydrates with hydroxyl moieties results in a less well-ordered peptide conformation.Conclusions: It is likely that the N-acetyl groups of the carbohydrates have a critical role in promoting the more compact β-turn conformation through steric interactions with the peptide. This study has demonstrated that relatively small changes in carbohydrate composition can have dramatic ramifications on glycopeptide conformation.  相似文献   

17.
BACKGROUND: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. RESULTS: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. CONCLUSIONS: Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.  相似文献   

18.
结合自制亲水固相萃取富集柱和生物质谱鉴定技术,实现了糖基化蛋白质核糖核酸酶B的糖含量测定、糖基化位点确认、聚糖富集及结构表征,以及不同糖型相对丰度分析。结果表明:其糖含量8.47%,糖基化位点为34位的Asn,糖链主要为5种高甘露糖型结构(Man5-9GlcNAc2)。所建立的HILIC富集技术,有利于针对微量生物样本,如生物工程药物糖蛋白及重要功能糖蛋白,开展位点特异性糖链结构解析,为糖蛋白质的药效或功能研究提供线索。  相似文献   

19.
We have previously demonstrated that liquid chromatography/mass spectrometry equipped with a graphitized carbon column (GCC-LC/MS) is useful for the structural analysis of carbohydrates in a glycoprotein. Here, we studied the monosaccharide composition analysis and quantitative oligosaccharide profiling by GCC-LC/MS. Monosaccharides were labeled with 2-aminopyridine and then separated and monitored by GCC-LC/MS in the selective ion mode. The use of tetradeuterium-labeled pyridylamino (d4-PA) monosaccharides as internal standards, which were prepared by the tagging of standard monosaccharides with hexadeuterium-labeled 2-aminopyridine (d6-AP), afforded a good linearity and reproducibility in ESIMS analysis. This method was successfully applied to the monosaccharide composition analysis of model glycoproteins, fetuin, and erythropoietin. For quantitative oligosaccharide profiling, oligosaccharides released from an analyte and a standard glycoprotein were tagged with d0- and d6-AP, respectively, and an equal amount of d0- and d4-PA oligosaccharides were coinjected into GCC-LC/MS. In this procedure, the oligosaccharides that existed in either analyte or a standard glycoprotein appeared as single ions, and the oligosaccharides that existed in both analyte and a standard glycoprotein were detected as paired ions. The relative amount of analyte oligosaccharides could be determined on the basis of the analyte/internal standard ion-pair intensity ratio. The quantitative oligosaccharide profiling enabled us to make a quantitative and qualitative comparison of glycosylation between the analyte and standard glycoproteins. The isotope tag method can be applicable for quality control and comparability assessment of glycoprotein products as well as the analysis of glycan alteration in some diseases.  相似文献   

20.
Investigations into the roles of protein glycosylation have revealed functions such as modulating protein structure and localization, cell-cell recognition, and signaling in multicellular systems. However, detailed studies of these events are hampered by the heterogeneous nature of biosynthetic glycoproteins that typically exist in numerous glycoforms. Research into protein glycosylation, therefore, has benefited from homogeneous, structurally-defined glycoproteins obtained by chemical synthesis. This tutorial review focuses on recent applications of homogeneous synthetic glycopeptides and glycoproteins for studies of structure and function. In addition, the future of synthetic glycopeptides and glycoproteins as therapeutics is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号