首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsed extraction (PE) of ions produced by matrix-assisted laser desorption/ionization in time-of-flight mass spectrometers greatly improves mass resolution but, unfortunately, this method is mass dependent. Here we report an approach to expand the capabilities of the PE method so as to provide uniform focusing conditions over a wide mass range. Along with an extraction pulse, an additional pulse is applied to correct the mass dependency of the standard PE method. We describe the algorithm for derivation of this correction pulse waveform, where the first-order focusing conditions are valid all along the mass region of interest. Experimental verification of this method for correction of ion velocities demonstrated better mass resolution than standard PE over a wide mass range.  相似文献   

2.
Mass correlated acceleration (MCA) has now been integrated into a 4 in (10.2 cm) matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer to achieve high resolving power across a broader mass range, without sacrificing detection of higher mass ions. The goal was to combine MCA with a custom-built miniaturized instrument such as those that might be used for field-portable applications. Unlike other pulsed extraction methods, MCA is not mass dependent and mass spectra can be achieved with a single tuning of instrument parameters. Additionally, the multi-channel recording advantage is better realized because ions of all masses can be brought into focus simultaneously. The MCA dual-stage ion source compensates dynamically for the mass dependence by incorporating an extraction pulse region followed by an acceleration region that contains a time-dependent waveform correlated with mass. The technique was validated with applications in peptide mixtures and protein digestions. Diagnostic studies for the instrument include m/z range and limits of detection.  相似文献   

3.
A single-stage ion mirror in a time-of-flight (TOF) mass spectrometer (MS) can perform first order velocity focusing of ions initially located at a start focal plane while second order velocity focusing can be achieved using a double-stage reflectron. The situation is quite different when an ion source extraction field is taken into account. In this case which is common in any practical matrix-assisted laser desorption/ionization (MALDI) TOF-MS a single-stage reflectron, for example, cannot perform velocity focusing at all. In this paper an exact, analytic solution for an electric field inside a one-dimensional reflectron has been found to achieve universal temporal focusing of ions having an initial velocity distribution. The general solution is valid for arbitrary electric field distributions in the upstream (from the ion source to the reflectron) and downstream (from the reflectron to an ion detector) regions and in a decelerating part of the reflectron of a reflectron TOF mass spectrometer. The results obtained are especially useful for designing MALDI reflectron TOF mass spectrometers in which the initial velocity distribution of MALDI ions is the major limiting factor for achieving high mass resolution. Using analytical expressions obtained for an arbitrary case, convenient working formulas are derived for the case of a reflectron TOF-MS with a dual-stage extraction ion source. The special case of a MALDI reflectron TOF-MS with an ion source having a low acceleration voltage (or large extraction region) is considered. The formulas derived correct the effect of the acceleration regions in a MALDI ion source and after the reflectron before detecting ions.  相似文献   

4.
To utilize fully modern MALDI-TOF and TOF/TOF mass spectrometers with mass resolution exceeding 10,000 and 2 ppm precision of flight time measurements for high mass accuracy, the model of ion motion used in the mass calibration equation must be expanded. The standard three-term equation providing up to 5-10 ppm (rms) mass accuracy with internal standards was modified with an additional term accounting for the finite rise time of the high-voltage extraction pulse. This new four-term calibration equation minimizes the effect of systematic error resulting from the fact that ion velocities are mass dependent due to the rise time of the extraction pulse. Applying this new calibration equation to a mass spectrum obtained in an axial MALDI-TOF MS containing 70 peaks (sodiated PEG), each with a signal-to-noise ratio greater than 100, a mass accuracy of 1.6 ppm (rms) was obtained over the mass range 1.0-4.0 kDa compared with 3.6 ppm (rms) with the standard three-term equation. The physical basis of the effects of the finite extraction pulse rise time on mass calibration is examined for axial MALDI-TOF mass spectrometers, as well as for orthogonal acceleration TOF mass spectrometers.  相似文献   

5.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

6.
Weak signal intensity and poor precursor ion selection are the major difficulties in tandem time-of-flight (TOF) mass spectrometry of ions generated by matrix-assisted laser desorption/ionization (MALDI). Even though the latter can be overcome in photodissociation (PD) tandem TOF mass spectrometry via ion pulse-PD laser pulse synchronization, clean monoisotopic selection of precursor ions of high m/z can often be difficult for various reasons. A considerable enhancement of post-source decay (PSD) and PD tandem mass spectra has been achieved in this work via single-ion detection and post-acquisition reduction of the spectra. Also, an algorithm has been developed to clean up isotopomeric contamination when the resolution for precursor ion selection is less than adequate. A high-quality tandem TOF mass spectrum which results from PD of virtually monoisotopic precursor ions has been obtained.  相似文献   

7.
Although TOF analyzers with orthogonal ion injection provide the whole spectrum without scanning, their duty cycle is low compared with scanning analyzers in single ion monitoring mode. Typical duty cycle is in the range of 5% to 30% depending on the instrument geometry and ion m/z value. We present here a novel trapping/releasing setup, which offers the duty cycle near 100% over a wide range. Operation in the mass range from m/z 120 to almost 2000 is demonstrated. Ions are trapped in a short linear ion trap at the end of the collision cell in an axial pseudopotential well created by additional rf (“AC”) voltage applied to all four rods of the trap with the same amplitude and phase. The pseudopotential created by AC field is mass dependent, and by ramping down the AC voltage, ions can be released from the trap sequentially from high m/z to low, while all ions are gaining the same kinetic energy. Upon entering the TOF accelerator, ions with lower m/z catch up with heavier ions, and the AC ramp parameters can be selected to make all ions meet in the center of the TOF extraction region, resulting in sensitivity gains from 3 to 14 without loss of mass accuracy or resolution.  相似文献   

8.
采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS),对四硫富瓦烯化合物进行质谱表征。在所用的实验条件下,样品很容易解吸电离生成单电荷分子离子,得到单同位素分辨的质谱图。26种实际样品的质谱分析结果表明;MALDI-TOF-MS可以比其它质谱方法更有效、更方便地用于此类化合物的质谱分析,解决了此类化合物不易进行质谱鉴定的难题。  相似文献   

9.
The time‐dependent reacceleration of product ions produced as a result of dissociation of a single precursor ion in a tandem time‐of‐flight mass spectrometer is considered for the first time. Analytical expressions for the shapes of electric pulses bringing all the kinetic energies of the product ions to the same value are derived for two cases: forward acceleration mode and deceleration, followed by re‐acceleration in the reversed direction (reversed mode). Secondary time‐of‐flight focusing resulting from the re‐acceleration in the reversed mode is shown to be mass‐dependent and, when averaged over a wide mass range, the focusing is tight enough to provide mass resolution exceeding 10 000. After time‐dependent re‐acceleration, additional compression of the ion packet width leading to better mass resolution can be obtained by decelerating the ions in a constant field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Some experimental factors affecting the resolution in glycerol infrared matrix-assisted laser desorption/ionization (IR-MALDI) time-of-flight (TOF) mass spectrometry were investigated. Loading the sample inside a cavity covered with a grid was found to improve the resolving power as reported previously, although not to the extent attainable in UV-MALDI using the same instrument. The resolving power improved as the laser spot area at the sample position got larger, becoming almost comparable with that in UV-MALDI when the spot area was a little larger than the cavity size. Reduced concentration of the ablated materials in the acceleration region with the use of the grid and large irradiation area may be responsible for the enhanced resolution. In addition, the threshold laser fluences measured in this work were lower than those reported in the literature and tended to decrease more rapidly as the irradiation area increased than predicted previously. The implication of similar threshold fluences for matrix and analyte ions is discussed in relation to the analyte ion formation mechanism.  相似文献   

11.
A high-performance orthogonal time-of-flight (TOF) mass spectrometer was developed specifically for use in combination with a matrix-assisted laser desorption/ionization (MALDI) source. The MALDI source features an ionization region containing a buffer gas with variable pressure. The source is interfaced to the TOF section via a collisional focusing ion guide. The pressure in the source influences the rate of cooling and allows control of ion fragmentation. The instrument provides uniform resolution up to 18,000 FWHM (full width at half maximum). Mass accuracy routinely achieved with a single-point internal recalibration is below 2 ppm for protein digest samples. The instrument is also capable of recording spectra of samples containing compounds with a broad range of masses while using one set of experimental conditions and without compromising resolution or mass accuracy.  相似文献   

12.
A matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer was developed which uses a novel reflectron composed of a grounded cylinder and an adjustable endcap electrode to provide high-order kinetic energy focusing for a miniaturized mass analyzer. The nearly quadratic potential form of the reflecting field focuses ions desorbed from a source of very small dimensions formed by placing the sample probe within the centered hole of the coaxial dual channel plate detector. At the same time, the depth of the reflectron can be adjusted to accommodate a short drift length between the source/detector and the reflectron. For larger drift lengths, in particular to allow the addition of an XY stage for the analysis of sample arrays, endcap reflectron focusing can be combined with time-delayed ion extraction to achieve good mass resolution. The instrument has been used for the analysis of peptides digested with trypsin or carboxypeptidase, and also small DNA oligomers.  相似文献   

13.
An ion mobility cell of a novel type was coupled to an orthogonal injection time-of-flight (TOF) mass spectrometer. The mobility cell operates at low-pressure and contains a segmented RF ion guide providing an axial electric field that drives the ions towards the exit. A flow of gas is arranged inside the ion guide in such a way that the gas drag counteracts the force exerted by the axial field. Ions with different mobility coefficients can be scanned out of the ion guide by ramping the axial field strength. The ions can be analyzed intact or fragmented in a collision cell before introduction into an orthogonal TOF mass spectrometer. An ion source with matrix assisted laser desorption/ionization (MALDI) was attached to the instrument. The setup was evaluated for the analysis of peptide and protein mixture, with sequential fragmentation of multiple precursor ions from a protein digest and with mobility separation of fragment ions formed by in-source fragmentation of pure peptides. The mobility resolution for peptides was observed to be three times higher than the theoretical resolution predicted for a classical mobility setup with similar operating conditions (pressure, field strength, and length).  相似文献   

14.
A method has been developed for determining the origin of meat and bone meal (MBM) by detecting species-specific osteocalcin (OC) using matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) and high-resolution hybrid mass spectrometry (HR-Q/TOF MS). The analysis is based on the detection of typical species-specific OC and its tryptic peptide fragments which differ in mass due to differences in the amino-acid sequences between species. After dissolving the MBM samples in EDTA buffer, purification after ultrafiltration was performed using two methods: solid-phase extraction using Zip-Tip C(18) or size exclusion coupled with reverse-phase chromatography. Fractions containing partially purified intact OC were analyzed using LC-Q/TOF and MALDI/TOF mass spectrometry. Species-specific OC was detected at the typical protonated and doubly protonated molecular ions. Furthermore, typical porcine- and bovine-derived tryptic fragments from MBM were detected after enzymatic digestion. In order to determine the underlying amino-acid sequences and to confirm the assignment to OC-derived peptides, MS/MS analysis was carried out. In conclusion, we were able to detect OC in bovine and porcine MBM with high sensitivity and the MS-based method described here by which total OC mass and marker peptides of digested OC are recorded can be used as an alternative approach to detect genus-specific differences in MBM and can be applied as a confirmatory method to mainly immunological osteocalcin screening methods.  相似文献   

15.
The influence of several instrument-operating parameters on the product-ion resolution and mass accuracy in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) post-source decay (PSD) and collision-induced dissociation (CID) experiments is reported. Voltages commonly applied to the reflectron for PSD and CID experiments were found to be non-ideal; optimization of these voltages resulted in better resolution across each segment of the measured PSD spectrum. Mass resolution, calculated as M/DeltaM (FWHM) for the product-ion peaks, was as high as 2500. Additionally, precursor-ion selection and segment mass range setup were each found to have dramatic influences on product-ion mass accuracy. An understanding of the influence of these variables aided in the interpretation of (a-NH3) and (b - NH3) ions observed in the PSD/CID spectra of a number of peptides. In addition, product ions resulting from coincidence peaks in the precursor-ion selection window were found to be a general problem. With the improvements to resolution and optimization of these mass accuracy variables, the mass accuracy of product ions from MALDI TOF PSD and CID experiments was tested with several reference materials, including the peptides Substance P, bradykinin, angiotensin I, and angiotensin II and the synthetic polymers poly(methyl methacrylate) and polystyrene. The absolute error (Da) for each test material was, on average, below 0.1 Da, demonstrating a significant improvement in mass accuracy using the improved operational parameters and an extension of the use of poly(ethylene glycol) (PEG) as a mass calibrant for the PSD/CID spectra.  相似文献   

16.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)对杯芳烃化合物进行了分析。探讨了样品的制备条件、仪器操作参数等因素对测定结果的影响。25种样品的质谱数据表明,利用MALDI-TOF-MS可非常方便地得到灵敏度、分辨率、准确度均较高,且易于识别和解析的质谱图,为此类化合物的质谱表征提供和建立了一种新的高效分析方法。  相似文献   

18.
Post-translational modifications (PTMs) of proteins are essential for proper function, as they regulate many aspects of a protein's activity and interaction with substrates. When analyzing modified peptides derived from such proteins by mass spectrometry, these modifications can dissociate, producing either a marker ion or neutral loss characteristic of the modification, which have conventionally been monitored with a precursor ion scan or neutral loss scan, respectively. Although powerful, both precursor ion scans and neutral loss scans can only screen for one particular modification at a time. This has led to the development of multiple neutral loss monitoring (MNM) for neutral losses and multiple precursor ion monitoring (MPM) for marker ions on electrospray instruments. Here, we report their implementation on a matrix-assisted laser desorption/ionization (MALDI) instrument as well as the inception of a novel scan strategy termed targeted multiple precursor ion monitoring (tMPM). This latter scan strategy has been developed on a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for the identification of multiple PTMs via their associated marker ions by manipulating certain components of the instrument, notably the timed ion selector and the delayed extraction source 2. Targeted MPM combined with a second approach, multiple neutral loss monitoring (MNM), is shown to be a successful approach in the identification of PTMs, identifying multiple modified peptides in a complex sample matrix.  相似文献   

19.
Liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC/TOF) provides an attractive alternative to liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS) in the field of multiresidue analysis. The sensitivity and selectivity of LC/TOF approach those of LC/MS/MS. TOF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of commercial TOF instruments ranging from 10 000 to 18 000 full width at half maximum (FWHM) is not, however, sufficient to completely exclude the problem of isobaric interferences (co-elution of analyte ions with matrix compounds of very similar mass). Due to the required data storage capacity, TOF raw data is commonly centroided before being electronically stored. However, centroiding can lead to a loss of data quality. The co-elution of a low intensity analyte peak with an isobaric, high intensity matrix compound can cause problems. Some centroiding algorithms might not be capable of deconvoluting such partially merged signals, leading to incorrect centroids.Co-elution of isobaric compounds has been deliberately simulated by injecting diluted binary mixtures of isobaric model substances at various relative intensities. Depending on the mass differences between the two isobaric compounds and the resolution provided by the TOF instrument, significant deviations in exact mass measurements and signal intensities were observed. The extraction of a reconstructed ion chromatogram based on very narrow mass windows can even result in the complete loss of the analyte signal. Guidelines have been proposed to avoid such problems. The use of sub-2 microm HPLC packing materials is recommended to improve chromatographic resolution and to reduce the risk of co-elution. The width of the extraction mass windows for reconstructed ion chromatograms should be defined according to the resolution of the TOF instrument. Alternative approaches include the spiking of the sample with appropriate analyte concentrations. Furthermore, enhanced software, capable of deconvoluting partially merged mass peaks, may become available.  相似文献   

20.
A computational technique is presented for the automated assignment of the multiple charge and multimer states (ionization states) in the time‐of‐flight (TOF) domain for matrix‐assisted laser desorption/ionization (MALDI) spectra. Examples of the application of this technique include an improved, automatic calibration over the 2 to 70 kDa mass range and a reduced data redundancy after reconstruction of the molecular spectrum of only singly charged monomers. This method builds on our previously reported enhancement of broad‐mass signal detection, and includes two steps: (1) an automated correction of the instrumental acquisition initial time delay, and (2) a recursive TOF detection of multiple charge states and singly charged multimers of molecular [MH]+ ions over the entire record range, based on MALDI methods. The technique is tested using calibration mixtures and pooled serum quality control samples acquired along with clinical study data. The described automated procedure improves the analysis and dimension reduction of MS data for comparative proteomics applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号