首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The silica nanoparticles were prepared by the sol–gel process, and then twice modified and grafted by polyethylenimine (PEI) on their surface. After quaternary ammonium reaction and chelated copper reaction, the PEI/SiO2, QPEI/SiO2, PEI–QPEI/SiO2 and Cu (II)/PEI–QPEI/SiO2 nanopowders were obtained in turn. The morphology and structure of the products were characterized through SEM, EDX, HRTEM, FTIR and element analysis. At the same time, the antibacterial activity of the products to E. coli and Candida were evaluated through quantification and qualitative ways, e.g. microcalorimetric method and culture dish method. The results suggested that the Cu (II)/PEI–QPEI/SiO2, a novel three-component functional nanopowder, presented the best antibacterial activity to both E. coli and Candida duo to the synergistic sterilization capability of the ammonium salt and copper ions, compared with other products. It indicated that the Cu (II)/PEI–QPEI/SiO2 nanopowder could be a novel antibacterial nanomaterial to widely application in preventing and minimizing bacteria of the organism and environment in future.  相似文献   

3.
The possibility of melt crystallization of the compound with CuFe2S3 composition was established by carrying out quasiequilibrium directional crystallization. The initial liquid had the following composition: Fe 33.3, Cu 16.7, and S 50.0 at.%. The produced sample consisted of three zones with different chemical compositions. The volume fraction of the first zone was 6 %, the second zone was 77 % and the third zone was 17 %. The composition of the first zone corresponded to pyrrhotite solid solution (poss). The second zone had the constant composition CuFe2S3. The third zone had variable composition. In the article this zone is not described. We constructed the curves describing the variations in the composition of solid ingot and melt during poss and CuFe2S3 crystallization, calculated the distribution coefficients of components, and determined the equation of phase reaction while transferring from the first to the second zone. A polythermal cross-section of phase diagram of the Cu–Fe–S system was built using the directional crystallization and thermal analysis of specially synthesized samples along the crystallization path. It is shown that stoichiometric CuFe2S3 compound crystallized from melt and the cross-section of phase diagram along the crystallization path is quasibinary. Thus, liquidus surface of the Fe–Cu–S system contains the region of primary crystallization of CuFe2S3, which is located between the crystallization fields of poss and intermediate solid solution.  相似文献   

4.
Wei  Yanze  Li  Huijuan  Zhang  Ruiling  Xie  Hanyi  Chen  Xiangfeng 《Research on Chemical Intermediates》2018,44(11):7107-7116
Research on Chemical Intermediates - The design and synthesis of effective photocatalysts for photodegradation of persistent organic pollutants is of significant importance. Novel CuFe2O4...  相似文献   

5.
Journal of Sol-Gel Science and Technology - Nanocomposite of Mn2O3/Al2O3/SiO2 was prepared through an in situ sol–gel process, in which Mn2O3 nanocrystals were dispersed in the silica-alumina...  相似文献   

6.
Major processing factors in forming Fe2SiO4/SiO2 and Fe2O3/SiO2 powders via sol–gel synthesis followed by solid-state reactions are investigated. The results clearly indicate that the chemical compositions of the precursors, the ratio of the precursors, the nature of the catalyst used, and the gas atmosphere during solid-state reactions can all affect the outcome of the reaction product(s). The formation of Fe2SiO4/SiO2 is enhanced by using the precursor iron(III) acetylacetonate as the Fe source with the precursor ratio of iron(III) acetylacetonate to tetraethyl orthosilicate being 1:1 and the addition of formic acid. Otherwise, crystalline Fe and Fe3C are formed in place of Fe2SiO4. By altering the gas atmosphere during solid-state reactions from argon to oxygen, the reaction products change from Fe2SiO4/SiO2 to Fe2O3/SiO2. All of the observed phenomena can be rationalized via the degree of mixing of the Fe–O and Si–O domains at the molecular level in the gel network during sol–gel reactions and the presence of a reducing or oxidizing atmosphere during the solid-state reaction.  相似文献   

7.
BaFe12O19–Ni0.8Zn0.2Fe2O4/graphene nanocomposites were prepared by a deoxidation technique. The structure, morphology and electromagnetic properties of the samples were detected by means of X-ray diffraction, scanning electron microscope, transmission electron microscopy, Raman, thermogravimetric analysis. Results show that the BaFe12O19–Ni0.8Zn0.2Fe2O4 nanoparticles dispersed on the graphene sheets. The magnetic properties of the composites decreased with the increasing of graphene contents, However, the electrical conductivity is in the contrary. Measurement of electromagnetic parameters shows that when the mass ratio of BaFe12O19–Ni0.8Zn0.2Fe2O4 to graphene is 5:1, it can be matched well. The microwave absorption property of it is below ?10 dB at 6.8–8.2 GHz and the minimum loss value is ?19.63 dB at 7.2 GHz. The introduction of graphene can increase the dielectric loss and has an important effect on the microwave absorption properties.  相似文献   

8.
Journal of Sol-Gel Science and Technology - In this work, a novel functionalized magnetic Fe3O4@SiO2 core-shell nanoparticles grafted with carboxymethyl β-cyclodextrin (CM-β-CD) is...  相似文献   

9.
ZrO2SiO2 aerogel modified by Fe(III) ion was prepared and the stability of the samples under high temperature was investigated. The structure and properties of modified aerogels were characterized by N2 adsorption–desorption, FT-IR, XRD and TEM. The samples still contain a specific surface area about 228 m2/g after 1,000 °C 0.5 h calcinations. The inhibition of ZrO2 particle growth is attributed to the Fe(III) ion modified aerogel surface, which strongly retards the ZrO2 tetragonal phase transformation as well.  相似文献   

10.
Dinuclear non-heme iron clusters containing oxo, hydroxo, or carboxylato bridges are found in a number of enzymes involved in O(2) metabolism such as methane monooxygenase, ribonucleotide reductase, and fatty acid desaturases. Efforts to model structural and/or functional features of the protein-bound clusters have prompted the preparation and study of complexes that contain Fe(micro-O(H))(2)Fe cores. Here we report the structures and spectroscopic properties of a family of diiron complexes with the same tetradentate N4 ligand in one ligand topology, namely [(alpha-BPMCN)(2)Fe(II)(2)(micro-OH)(2)](CF(3)SO(3))(2) (1), [(alpha-BPMCN)(2)Fe(II)Fe(III)(micro-OH)(2)](CF(3)SO(3))(3) (2), and [(alpha-BPMCN)(2)Fe(III)(2)(micro-O)(micro-OH)](CF(3)SO(3))(3) (3) (BPMCN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane). Stepwise one-electron oxidations of 1 to 2 and then to 3 demonstrate the versatility of the Fe(micro-O(H))(2)Fe diamond core to support a number of oxidation states with little structural rearrangement. Insight into the electronic structure of 1, 2', and 3 has been obtained from a detailed M?ssbauer investigation (2' differs from 2 in having a different complement of counterions). Mixed-valence complex 2' is ferromagnetically coupled, with J = -15 +/- 5 cm(-)(1) (H = JS(1).S(2)). For the S = (9)/(2) ground multiplet we have determined the zero-field splitting parameter, D(9/2) = -1.5 +/- 0.1 cm(-)(1), and the hyperfine parameters of the ferric and ferrous sites. For T < 12 K, the S = (9)/(2) multiplet has uncommon relaxation behavior. Thus, M(S) = -(9)/(2) <--> M(S) = +(9)/(2) ground state transition is slow while deltaM(S) = +/-1 transitions between equally signed M(S) levels are fast on the time scale of M?ssbauer spectroscopy. Below 100 K, complex 2' is trapped in the Fe(1)(III)Fe(2)(II) ground state; above this temperature, it exhibits thermally assisted electron hopping into the state Fe(1)(II)Fe(2)(III). The temperature dependence of the isomer shifts was corrected for second-order Doppler shift, obtained from the study of diferrous 1. The resultant true shifts were analyzed in a two-state hopping model. The diferric complex 3 is antiferromagnetically coupled with J = 90 +/- 15 cm(-)(1), estimated from a variable-temperature M?ssbauer analysis.  相似文献   

11.
In the present work, silica and titania reinforced polybenzoxazine (PBZ–SiO2–TiO2) hybrid nanomaterial possessing high surface free energy have been developed using dimethylol-functional benzoxazine monomer (4HBA-BZ), tetraethoxysilane (TEOS), 3-(isocyanatopropyl)triethoxysilane (ICPTS), titaniumisopropoxide (TIPO) through an in situ sol–gel process. Data obtained from the contact angle measurement indicate that the hybrid materials are hydrophilic in nature and possess a high surface free energy. For example, hybrid PBZ obtained from 1:1:0.6:0.4 (m:m:w:w) ratio of 4HBA-BZ:ICPTS:TEOS:TIPO (PBST4) exhibit a high surface free energy of 38.2 mJm?2 which is higher than that of neat polybenzoxazine (29.5 mJm?2). Further data resulted from thermal studies indicate that the hybrid PBZ possess higher values of Tg, thermal stability and char yield than those of neat PBZ.  相似文献   

12.
Journal of Thermal Analysis and Calorimetry - This study shows multiple solutions, heat transfer characteristics, and stability analysis of the magnetohydrodynamic (MHD) flow of hybrid nanofluid...  相似文献   

13.
The CdS modified TiO2/Fe3O4 photocatalysts were prepared by sol–gel and immersion methods. The morphological, structural and optical properties of as-prepared samples were characterized by X-ray diffraction (XRD), UV–Vis absorption spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The TEM observation showed that the surface of magnetite particles (Fe3O4) were coated by CdS–TiO2 layer as loose clusters, and average diameter of composites particles was about 250 nm. UV–Vis absorption spectra indicated that CdS–TiO2/Fe3O4 composites had pronounced red-shift compared with that of TiO2/Fe3O4. The CdS–TiO2/Fe3O4 composites exhibit higher photocatalytic activity than pure TiO2 and TiO2/Fe3O4 for the degradation of Reactive Brilliant Red X-3B dye (X-3B) aqueous solution under simulated sunlight, and the optimum content of CdS is 1.0 % (mol ratio of CdS to TiO2). In addition, a gradual loss of photocatalytic activity can be observed in reusability test of CdS–TiO2/Fe3O4 composites, and degradation of X-3B reached still to 78.9 % after five runs.  相似文献   

14.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

15.
This paper reports on the preparation of SO4 2?/Fe2O3–TiO2–Nd2O3 (SFTN) by combustion method. The effect of Nd content on catalytic activity was investigated. The prepared materials doped and undoped by Nd were compared by means of TG-DTG, XRD, FT-IR, NH3-TPD and TEM techniques. Results indicated that the introduction of Nd improved the catalytic activities of the catalysts. Catalytic activity of SFTN was the highest with 98.3 % menthol conversion when Nd content was at 2 wt%. The introduction of Nd stabilized the coordination bond between the sulfate irons and the metallic oxides, helping in the formation of solid acid sites, enhancing the dispersion of catalyst particles, and inhibiting the growth of catalyst particles under heating.  相似文献   

16.
The self-assembly of [Fe(III){B(pz)(4)}(CN)(3)](-) and [Co(II)(bik)(2)(S)(2)](2+) affords the diamagnetic cyanide-bridged [Fe(II)(LS)Co(III)(LS)](2) molecular square which is converted into the corresponding magnetic [Fe(III)(LS)Co(II)(HS)](2) species under light irradiation at relatively low temperatures.  相似文献   

17.
Russian Journal of Physical Chemistry A - A hydrogel nanocomposite composed of reduced graphene oxide (RGO), iron oxide (Fe3O4) nanoparticles, and polyacrylamide (PAM) was prepared using radical...  相似文献   

18.
A number of chelates of the transition metal ions Fe2+, Fe3+, Co2+, Ni2+, Cu2+ and Pd2+ with 2′-hydroxy - 3′ - bromo - 4 - methoxy - 5′ - methylchalkone oxime (HBMMCO) have been synthesised. Attempts have been made to assign their probable structures on the basis of elemental analysis, molar conductance, thermal analysis, absorption and reflectance spectra, IR spectra and magnetic data. The magnetic susceptibility of the Co(II) chelate follows the Curie-Weiss law and the observed temperature dependance is in favour of an octahedral configuration. The Ni(II) chelate exhibits a 6-coordinate octahedral structure, whilst distorted octahedral geometry is suggested for the Cu(II) chelate. The Fe(II) and Fe(III) chelates have high spin octahedral configurations and the dimagnetic behaviour of the Pd(II) complex indicates a square planer configuration.  相似文献   

19.
20.
A carboxylate-bridged Cu(II)–Gd(III) complex, [GdCu(CH2CH(CH3COO)4(H2O)4] n (NO3) n , was prepared and characterized. Single crystal X-ray analysis reveals the complex as a carboxylate-bridged 1-D Cu(II)–Gd(III) coordination polymer. The magnetic measurement showed this complex exhibiting weak ferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号