首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
A phenomenological model is proposed for characterizing rate-independent hysteresis exhibited by preconditioned soft tissues. The preconditioned tissue is modeled as an isotropic composite of a hyperelastic component and a dissipative (inelastic) component. Specifically, the constitutive equations are hyperelastic in the sense that the stress is determined by derivatives of a strain energy function. Inelasticity of the dissipative component is controlled by a yield function with different functional forms for the hardening variable during deformation loading and unloading. The constitutive equations proposed in this paper are simple. In particular, they depend on only seven material constants: three controlling the response of the elastic component and the remainder controlling the response of the dissipative component. More importantly, the material constants can be determined to match rather general loading and unloading behavior. It is observed that the hysteretic response of the model compares well with experimental data for passive uniaxial loading/unloading of Manduca muscle. Moreover, the present model treats partial loading and reloading of preconditioned tissue as elastic–plastic response, which is different from the treatment of pseudo-elastic models used in the literature.  相似文献   

3.
The purpose of this work is to provide a theoretical analysis of the mechanical behavior of the growth of soft materials under geometrical constraints. In particular, we focus on the swelling of a gel layer clamped to a substrate, which is still the subject of many experimental tests. Because the constrained swelling process induces compressive stresses, all these experiments exhibit surface instabilities, which ultimately lead to cusp formation. Our model is based on fixing a neo-Hookean constitutive energy together with the incompressibility requirement for a volumetric, homogeneous mass addition. Our approach is developed mostly, but not uniquely, in the plane strain configuration. We show how the standard equilibrium equations from continuum mechanics have a similarity with the two-dimensional Stokes flows, and we use a nonlinear stream function for the exact treatment of the incompressibility constraint. A free energy approach allows the extension both to arbitrary hyperelastic strain energies and to additional interactions, such as surface energies. We find that, at constant volumetric growth, the threshold for a wavy instability is completely governed by the amount of growth. Nevertheless, the determination of the wavelength at threshold, which scales with the initial thickness of the gel layer, requires the coupling with a surface effect. Our findings, which are valid in proximity of the threshold, are compared to experimental results. The proposed treatment can be extended to weakly nonlinearities within the aim of the theory of bifurcations.  相似文献   

4.
A thermodynamically consistent dissipative model is proposed to describe softening phenomena in anisotropic materials. The model is based on a generalized polyconvex anisotropic strain energy function represented by a series. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. Accordingly, evolution equations are formulated and anisotropic conditions for the onset of softening are defined. In numerical examples, the model is applied to simulate the preconditioning behavior of soft biological tissues subjected to cyclic loading experiments. The results suggest that the general characteristics of preconditioning with different upper load limits are well captured including hysteresis and residual deformations. A model for the Mullins effect is obtained as a special case and shows very good agreement with experimental data on mouse skin.  相似文献   

5.
6.
Deformation induced softening is an inelastic phenomenon frequently accompanying mechanical response of soft biological tissues. Inelastic phenomena which occur in mechanical testing of biological tissues are very likely to be associated with alterations in the internal structure of these materials.In this study, a novel structural constitutive model is formulated to describe the inelastic effects in soft biological tissues such as Mullins type behavior, damage and permanent set as a result of residual strains after unloading. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. We consider two weight factors wi (softening) and sk (discontinuous damage) as internal variables characterizing the structural state of the material. Numerical simulations of several soft tissues are used to demonstrate the performance of the model in reproducing the inelastic behavior of soft biological tissues.  相似文献   

7.
This paper concerns the modeling of biological soft tissues in the framework of anisotropic hyperelasticity. A closed form solution is proposed in the special case where uniaxial unconstrained tension loading is applied to a strip modeled by Holzapfel-Gasser-Ogden's (HGO) strain energy. The classical Cardano's formula is used to calculate the solution. This solution is investigated for different values of β which represents the angle between the collagen fibers and the circumferential direction. This study allows for the understanding of the reason why a one-to-one correspondence does not exist between the principal stretch and the fourth invariant of the right Cauchy-Green deformation tensor. It is demonstrated that the relationship becomes non-bijective when β is greater than a critical angle of 54.73°. The HGO model is implemented into an in-house finite element program and numerical results are in good agreement with theoretical ones.  相似文献   

8.
Equations for the evolution of curves in IR3 and on surfaces in IR3 are derived from a configurational force balance, a mechanical version of the second law, and suitable constitutive assumptions. Both the isotropic and anisotropic cases are considered.Sommario.In questo lavoro si derivano le equazioni di evoluzione per curve in IR3 e su superfici di IR3, utilizzando un bilancio di forze configurazionali, una versione meccanica del secondo principio e opportune ipotesi costitutive. Sono trattati sia il caso isotropo che anisotropo.  相似文献   

9.
Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (i) a fluid phase, and (ii) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.  相似文献   

10.
A major mechanism for electrochemical aging of Li-ion batteries is the growth of a solid electrolyte interphase (SEI) layer on the surface of anode particles, which leads to capacity fade and also results in a rise in cell resistance. We have formulated a continuum theory for the growth of an SEI layer—a theory which accounts for the generation of the attendant growth stresses. The theory has been numerically implemented in a finite-element program. This simulation capability for SEI growth is coupled with our previously published chemo-mechanical simulation capability for intercalation of Li-ions in electrode particles. Using this new combined capability we have simulated the formation and growth of an SEI layer during cyclic lithiation and delithiation of an anode particle, and predicted the evolution of the growth stresses in the SEI layer. The evolution of the stress state within the SEI layer and at the SEI/anode-particle interface for spherical- and spheroidal-shaped graphite particles is studied. This knowledge of the local interfacial stresses provides a good estimate for the propensity of potential delamination of an SEI layer from an anode particle.  相似文献   

11.
将环境对双模量隔冲减振器的冲击分为两个阶段,在半正弦波冲击作用阶段采用双自由度模型进行响应计算,并以终了时刻的位移和速度作为自由振动阶段的初始条件,对自由振动阶段的单自由度模型进行响应计算。分析了某双模量隔冲减振系统在受半正弦波环境冲击下的响应特性,并与线性系统在受该冲击下的性质进行了比较。分析结果表明较易实现的双模量隔冲减振器具有较好的效果。  相似文献   

12.
A mathematic model is developed to describe heat and mass transfer with phase change in the porous wick of evaporator of capillary pumped loop (CPL). This model with six field variables, including temperature, liquid content, pressure, liquid velocity, vapor velocity and phase-change rate, is closed mathematically with additional pressure relationships introduced. The present model is suitable to the numerical computation, as the established equations become comparatively easy to solve, which is applied to CPL evaporator. The numerical results are obtained and the parameter effects on evaporator are discussed. The study demonstrates that instead of an evaporative interface, there exists an unsaturated two-phase zone between the vapor-saturated zone and the liquid-saturated zone in the wick of CPL evaporator.  相似文献   

13.
The objective of this part of the paper is to summarize the information concerning the authors' works in the field of simulation of two-phase gas-particle turbulent flows with heat transfer and combustion. A kinetic equation had been derived for the probability density function (PDF) of the particle velocity, temperature, and mass distributions in turbulent flows. This PDF equation is used for the construction of the governing conservation equations of mass, momentum, and heat transfer in the dispersed particle phase.The numerical scheme incorporates two-phase fluid dynamics, convective and radiative heat transfer, and combustion. The proposed models have been applied to the calculation of various particle-laden turbulent flows in jets, combustion and gasification chambers, and furnaces.  相似文献   

14.
Intrinsically, fatigue failure problem is a typical multiscale problem because a fatigue failure process deals with the fatigue crack growth from microscale to macroscale that passes two different scales. Both the microscopic and macroscopic effects in geometry and material property would affect the fatigue behaviors of structural components. Classical continuum mechanics has inability to treat such a multiscale problem since it excludes the scale effect from the beginning by introducing the continuity and homogeneity assumptions which blot out the discontinuity and inhomogeneity of materials at the microscopic scale. The main obstacle here is the link between the microscopic and macroscopic scale. It has to divide a continuous fatigue process into two parts which are analyzed respectively by different approaches. The first is so called as the fatigue crack initiation period and the second as the fatigue crack propagation period. Now the problem can be solved by application of the mesoscopic fracture mechanics theories developed in the recent years which focus on the link between different scales such as nano-, micro- and macro-scale.On the physical background of the problem, a restraining stress zone that can describe the material damaging process from micro to macro is then introduced and a macro/micro dual scale edge crack model is thus established. The expression of the macro/micro dual scale strain energy density factor is obtained which serves as a governing quantity for the fatigue crack growth. A multiscaling formulation for the fatigue crack growth is systematically developed. This is a main contribution to the fundamental theories for fatigue problem in this work. There prevail three basic parameters μ, σ and d in the proposed approach. They can take both the microscopic and macroscopic factors in geometry and material property into account. Note that μ, σ and d stand respectively for the ratio of microscopic to macroscopic shear modulus, the ratio of restraining stress to applied stress and the ratio of microvoid size ahead of crack tip to the characteristic length of material microstructure.To illustrate the proposed multiscale approach, Hangzhou Jiangdong Bridge is selected to perform the numerical computations. The bridge locates at Hangzhou, the capital of Zhejiang Province of China. It is a self-anchored suspension bridge on the Qiantang River. The cables are made of 109 parallel steel wires in the diameter of 7 mm. Cable forces are calculated by finite element method in the service period with and without traffic load. Two parameters α and β are introduced to account for the additional tightening and loosening effects of cables in two different ways. The fatigue crack growth rate coefficient C0 is determined from the fatigue experimental result. It can be concluded from numerical results that the size of initial microscopic defects is a dominant factor for the fatigue life of steel wires. In general, the tightening effect of cables would decrease the fatigue life while the loosening effect would impede the fatigue crack growth. However, the result can be reversed in some particular conditions. Moreover, the different evolution modes of three basic parameters μ, σ and d actually have the different influences on the fatigue crack growth behavior of steel wires. Finally the methodology developed in this work can apply to all cracking-induced failure problems of polycrystal materials, not only fatigue, but also creep rupture and cracking under both static and dynamic load and so on.  相似文献   

15.
The properties of harmonic surface waves in an elastic cylinder made of a rigid material and filled with a fluid are studied. The problem is solved using the dynamic equations of elasticity and the equations of motion of a perfect compressible fluid. It is shown that two surface (Stoneley and Rayleigh) waves exist in this waveguide system. The first normal wave generates a Stoneley wave on the inner surface of the cylinder. If the material is rigid, no normal wave exists to transform into a Rayleigh wave. The Rayleigh wave on the outer surface forms on certain sections of different dispersion curves. The kinematic and energy characteristics of surface waves are analyzed. As the wave number increases, the phase velocities of all normal waves, except the first one, tend to the sonic velocity in the fluid from above __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 48–62, September 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号