首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capabilities of atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) methods for quantitative analysis of polar and ionic compounds in petroleum fractions have been examined. The requirements of the analysis for sensitivity, linear dynamic range, and structural characterization have been discussed. ESI was found to be approximately two orders of magnitude more sensitive than APCI and is most suitable for the detection of analytes in weak concentrations. Equivalent relative linear dynamic ranges were observed by the two methods (at least three orders of magnitude). For the relatively high analyte concentrations examined here (e.g., 1-100 ppm or higher), the absolute area counts increased linearly with the analyte amount only in APCI, making this method more attractive for quantitative liquid chromatography/mass spectrometry (LC/MS) applications. Nevertheless, a wider range of ionic compounds can be detected by ESI than by APCI.  相似文献   

2.
We report the development and tests of several systems for the simultaneous determination of 18 energetic compounds and related congeners in untreated water samples. In these systems a Restricted Access Material trap or liquid-chromatography precolumn (with a C(18) or porous graphitic carbon, PGC, stationary phase) followed by a PGC analytical column are used for sample clean-up, enrichment and separation of the trace level analytes, which are then analyzed by mass spectrometry (MS). The relative merits of two MS ionization interfaces (atmospheric pressure chemical ionization, APCI, and atmospheric pressure photoionization, APPI) were also compared for the MS identification and quantification of these analytes. APCI was found to be superior in cases where both alternatives are applicable. A major drawback when applying APPI is that no signal is obtained for the cyclic nitramines and nitrate esters. Using APCI, a wide spectrum of unstable compounds can be determined in a single analysis, and the feasibility of using large volume samples (up to 100 mL) in combination with the sensitivity of the MS detection system provide method detection limits ranging from 2.5 pg/mL (for 2,4-dinitrotoluene and 2,6-diamino-6-nitrotoluene) to 563 pg/mL (for pentaerythritol tetranitrate, PETN), with repeatability ranging from 2 to 7%. Other chemometric parameters such as robustness, selectivity, repeatability, and intermediate precision were also evaluated in the validation of the extraction methods for use in water analysis. Tests with untreated groundwater and drinking water samples, spiked with 20 ng of the analytes, yielded results similar to those obtained with high purity water samples.  相似文献   

3.
Selected reaction monitoring (SRM) with electrospray ionization was used as a specific detection technique for the analysis of alkanolamines in plant tissue extracts. Ion-exchange chromatography was used as the method of separation. Quantification was based on monitoring the loss of either H2O or 2(H2O) from the protonated molecule [M+H]+. The method provided increased selectivity for all analytes and better detection limits for three of the six analytes investigated compared with an earlier method using selected ion monitoring with liquid chromatography. Instrumental detection limits ranged from 6-300 pg injected for monoethanolamine (MEA), monoisopropanolamine (MIPA), diethanolamine (DEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), and triethanolamine (TEA). Method robustness and selectivity were demonstrated by the determination of DIPA and a known transformation product MIPA in over 35 plant extract samples derived from a laboratory study of plant uptake mechanisms.  相似文献   

4.
A system was developed for the separation of sulfophthalimide (SPI), sulfophthalamide (SPAM), sulfophthalamic acid (SPAA) and sulfophthalic acid (SPA) by ion-pair liquid chromatography and their detection by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Except for SPAM, the 3- and 4-sulfo-isomers of the analytes were separated by HPLC using volatile tributylamine as ion-pairing agent. Initial fragmentations of the analytes in the negative mode involve losses of CO2 or HNCO or condensation via H2O or NH3 elimination. ortho-Effects of the sulfonate group were recognized in the fragmentation of the respective 3-sulfo-isomers and allowed us to assign the order of elution of the SPAA isomers. Quantitative analysis of these sulfonated aromatic compounds with MRM detection was elaborated and resulted in detection limits ranging from 1 pg for SPA to 13 pg for SPAA isomers and in limits of quantification of 2-10 microg/L for 5 microL volumes of injected tap water, municipal wastewater or industrial effluents up to salt contents of 0.5-1 g/L. The method was applied to study the isomer-specific chemical and microbial transformations of SPI, which was previously shown to be formed by white-rot fungi from sulfophthalocyanine textile dyes.  相似文献   

5.
Factors affecting the sensitivity and selectivity of the determination of diuretics, anabolic steroids, central nervous system stimulants, and narcotics in the analysis of human urine extracts by high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure electrospray ionization and recording of positive ions were investigated. Mass spectra were obtained for all of the test compounds; the characteristic ions, retention times, detection limits, degree of ionization suppression by the matrix, the extraction of the analytes from human biological fluids were determined for all analytes; the selectivity and specificity of determination were evaluated.  相似文献   

6.
Molina M  Silva M 《Electrophoresis》2001,22(6):1175-1181
The potential of micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection for the separation and determination of phosphorus-containing amino acid-herbicides (glufosinate and glyphosate), and aminomethylphosphonic acid (the major metabolite of glyphosate), involving derivatization with fluorescein isothiocyanate (FITC) isomer I, was investigated. Different variables that affect derivatization (pH, FITC concentration, time and temperature) and separation (pH and concentration of the buffer, kind and concentration of surfactants and applied voltage) were studied. The analysis was conducted within about 8 min and the use of the nonionic surfactant Triton X-100 improved the selectivity, thus indirectly enhancing sensitivity by shifting of the interfering peaks of the FITC excess. Dynamic ranges of 2.0-3,000 microg/L, limits of detection at microgram or submicrogram-per-liter level, and relative standard deviations from 4.7 to 6.4% were obtained. The ensuing method--nonionic surfactant MEKC-- is a useful choice for the determination of these herbicides as it provides limits of detection similar or lower than those reported by existing chromatographic alternatives without the use of an additional preconcentration technique such as solid-phase extraction. The separation of a mixture of nine FITC-derivatized amino acids, selected as target compounds, was also carried out to assess the discrimination power of the nonionic surfactant MEKC method for the analysis of closely related anionic analytes.  相似文献   

7.
A mini membrane inlet mass spectrometer (mini-MIMS) of a total weight of 12 kg was constructed using a miniature Multipole mass spectrometer, a small vacuum system and a flexible flat sheet membrane inlet, where the exposed membrane area can be changed by a factor of 80. The variable membrane area together with the possibility of operating the Multipole at pressures up to 1 x 10(-3) Torr made it possible to test the system with three microporous membranes (cellulose, polyether sulfone and polypropylene) normally not compatible with standard electron ionization MIMS systems and a standard non-porous polydimethylsiloxane membrane. We found that the hydrophilic cellulose and polyether sulfone membranes had selectivity characteristics opposite to those of the standard silicone membrane. They demonstrated preferential detection of hydrophilic compounds in hydrophobic organic solvents, whereas the silicone membrane preferentially detects hydrophobic organic compounds in aqueous solution. Using the cellulose membrane, organic contaminants and water could be detected in organic solvents at 10-100 ppm levels by weight, the relative high detection limits primarily caused by interference from a high chemical background from the solvent. When being used with the standard silicone membrane the mini-MIMS behaved just like most standard MIMS systems with detection limits of volatile organic compounds in water at concentrations just below 1 ppm. The hydrophobic microporous polypropylene membrane was not found to be useful with the mini-MIMS.  相似文献   

8.
Park SH  Son YC  Shaw BR  Creasy KE  Suib SL 《The Analyst》2001,126(8):1382-1386
Tin oxide thin films prepared by thermal oxidation of Sn films were used for the detection of chlorinated methanes (CH2Cl2, CHCl3 and CCl4). This resulted in better chemical selectivity, sensitivity, response speed and detection limit than seen with previous detectors. The temperature dependence of the sensing of 1% CCl4 gas was studied and the best sensing behavior was observed at 300 degrees C. The films showed different chemical selectivity in both speed and direction of sensing response to each gas and were stable for more than 3 weeks under operating conditions. The films showed rapid gas sensing (<40 s to reach 90% of full response) and low detection limits (< 4 ppm CCl4). The role of oxygen in the detection of chlorinated methanes and in resistance changes without chlorinated methanes was also studied. The changes at the surface of the film after gas sensing were examined using scanning electron microscopy with energy-dispersive X-ray spectrometry.  相似文献   

9.
Colloidal suspensions of 3-aminopropylmethyl(tetraphenyl)silole nanoparticles can be used as selective chemosensors for carcinogenic chromium(VI) analyte. Methylhydrosilole is functionalized by hydrosilation of allylamine, and the colloid is prepared by the rapid addition of water to a THF solution of the silole. The method of detection is through electron-transfer quenching of the fluorescence of the silole colloid (lambda(em) = 485 nm at 360 nm excitation) by the analytes, with hundred parts per billion detection limits. Stern-Volmer plots are linear up to 10 ppm in the case of chromium, but exhibit saturation behavior near 5-10 ppm for arsenic. Dynamic light scattering experiments and AFM measurements show the particle sizes to be around 100 nm in diameter and dependent on solvent composition, with a particle size dispersity of +/-25%. The fluorescence lifetimes of the silole in solution and colloid are approximately 31 ps and approximately 4.3 ns, respectively, while the silole has a lifetime of 6 ns in the bulk solid. A minimum volume fraction of 80% water is necessary to precipitate the colloid from THF, and the luminescence continues to rise with higher water fractions. Colloids in a pH 7 phosphate-buffered suspension show both higher sensitivity and greater selectivity (100-fold) for CrO4(2-) detection than for other oxoanion interferents, NO3-, NO2-, SO4(2-), and ClO4-.  相似文献   

10.
In this paper, the selectivity and sensitivity of cyclodextrin (CD) modified infrared (IR) chemical sensor in detection of aromatic acids in aqueous solutions were reported. To eliminate the interference from water, the technique of attenuated total reflection was employed. By surface treated with CD molecules on the internal reflection elements, the sensors were selective in sensing of aromatic acids compared to aromatic compounds with other functional groups. To facilitate the use of this method for the quantitative analyses of aromatic acids in aqueous solutions, analytical functions were also developed in this work and a linear relationship between analytical responses and concentrations of analytes can be obtained. To optimize the analytical conditions, the factors that influence the IR spectroscopic signals were examined. These factors included response time, CD loadings of the sensors, pH effect on response, regeneration efficiency and stability of sensors. Under the optimal conditions, the detection limits for aromatic acids at a detection time of 2 min can be <100 μg/L. Meanwhile, the dynamic linear range for detection was only ca. two orders of magnitude if direct IR signals were used. Using the analytical function developed in this work, the linearity can be extended up to a concentration of 100 mg/L.  相似文献   

11.
Quantification of trace concentrations of transformation products of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in water requires complex analytical instrumentation and tedious sample preparation. The goal of this research was to develop a simple and automated method for sensitive quantification of UDMH transformation products in water using headspace (HS) solid-phase microextraction (SPME) in combination with GC-MS and GC-MS/MS. HS SPME is based on extraction of analytes from a gas phase above samples by a micro polymer coating followed by a thermal desorption of analytes in a GC inlet. Extraction by 85 µm Carboxen/polydimethylsiloxane fiber at 50 °C during 60 min provides the best combination of sensitivity and precision. Tandem mass spectrometric detection with positive chemical ionization improves method accuracy and selectivity. Detection limits of twelve analytes by GC-MS/MS with chemical ionization are about 10 ng L?1. GC-MS provides similar detection limits for five studied analytes; however, the list of analytes detected by this method can be further expanded. Accuracies determined by GC-MS were in the range of 75–125% for six analytes. Compared to other available methods based on non-SPME sample preparation approaches (e.g., liquid–liquid and solid-phase extraction), the developed method is simpler, automated and provides lower detection limits. It covers more UDMH transformation products than available SPME-based methods. The list of analytes could be further expanded if new standards become available. The developed method is recommended for assessing water quality in the territories affected by space activities and other related studies.  相似文献   

12.
The results of a study dealing with surface acoustic wave gas sensors for organophosphorus compounds such as nerve agents are described. Several lanthanum coordination compounds were applied as the chemical interface. The various sensors prepared were challenged with both the nerve agent sarin and the simulant dimethyl methylphosphonate. Many aspects were studied, such as sensitivity, selectivity, reversibility and response rate as well as the effect of temperature and structural features. Detection limits down to 0.1 ppm were found. Response rates require further improvement. Degradation phenomena were observed which in some cases yielded irreversible responses. The selectivity for organophosphorus compounds was found to be promising.  相似文献   

13.
A portable tandem mass spectrometer, capable of performing atmospheric pressure chemical ionization (APCI) using a direct atmospheric inlet, is applied to the real-time monitoring of toxic compounds in air. Analytes of interest include dimethyl methylphosphonate, arsine, benzene, toluene, pyridine and vinyl acetate. The detection, identification and quantification of organic and inorganic compounds in air is demonstrated using short analysis times (<5 seconds) with detection limits in the low ppb (v/v) levels and linear dynamic ranges of several orders of magnitude. Highly specific detection and identification is achieved, even when the analyte is a trace component in a complex mixture including such interferents as fuels, lubricants, and cleaners. The effects of environmental conditions, including temperature and humidity, are delineated. Receiver operating characteristic (ROC) curves are presented to show the trade-off between false positive and false negative detection rates. Tandem mass spectrometry based both on collision-induced dissociation and on selective atmospheric pressure ion/molecule reactions is also used to increase selectivity and sensitivity.  相似文献   

14.
Air-stable organic thin-film transistor (OTFT) sensors fabricated using spin-cast films of 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (OBNc) demonstrated improved chemical vapor sensitivity and selectivity relative to vacuum-deposited phthalocyanine (H(2)Pc) OTFTs. UV-vis spectroscopy data show that annealed spin-cast OBNc films exhibit a red-shift in the OBNc Q-band λ(max) which is generally diagnostic of improved π-orbital overlap in phthalocyanine ring systems. Annealed OBNc OTFTs have mobilities of 0.06 cm(2) V(-1) s(-1), low threshold voltages (|V(th)| < 1 V), and on/off ratios greater than 10(6). These air-stable device parameters are utilized for sensing modalities which enhance the sensitivity and selectivity of OBNc OTFTs relative to H(2)Pc OTFTs. While both sensors exhibit mobility decreases for all analytes, only OBNc OTFTs exhibit V(th) changes for highly polar/nonpolar analytes. The observed mobility decreases for both sensors are consistent with electron donation trends via hydrogen bonding by basic analytes. In contrast, V(th) changes for OBNc sensors appear to correlate with the analyte's octanol-water partition coefficient, consistent with polar molecules stabilizing charge in the organic semiconductor film. The analyte induced V(th) changes for OBNc OTFTs can be employed to develop selective multiparameter sensors which can sense analyte stabilized fixed charge in the film.  相似文献   

15.
Nonaqueous capillary electrophoresis (NACE) equipped with amperometric detection has been developed for separation and detection of an 11-member model mixture of chlorinated phenolic compounds. With triacetyl-beta-cyclodextrin (TACD) as a novel selectivity selector, acetonitrile proved to be an excellent solvent for this water-insoluble cyclodextrin derivative. Resolution of the analytes was achieved by using an optimized acetonitrile medium consisting of 500 mM acetic acid, 10 mM sodium acetate, 12 mM TACD and 50 mM tetrabutylammonium perchlorate. Separation of analytes was attributed to differential electrostatic and/or inductive interactions of the analytes with the TACD/TBA+ complex and charged tetrabutylammonium phases. A simple end-column amperometric detector (Pt vs. Ag/AgCl, poised at +1.6 V) in conjunction with NACE was used to analyze chlorophenols. Amperometric detection of such target compounds in acetonitrile-based media offers high sensitivity and alleviates electrode fouling compared to aqueous buffers. The detection limits obtained, ranging from 30 nM to 500 nM, are 3-8-fold lower than those obtained with aqueous buffers.  相似文献   

16.
《中国化学快报》2020,31(8):2055-2058
Tin dioxide is important gas sensor material and has wide applications in the detection of toxic gases and volatile organic compounds. Here, we synthesized a 3D laminated structural CuO/SnO2 material possessing p-n heterostructures. The morphology and structure were characterized by XRD, SEM, TEM and XPS techniques and the sensing properties were investigated for the detection of triethylamine (TEA). The results indicate that 3D laminated CuO/SnO2 material, assembled by lamellae consisting of ordered nanoparticles, exhibit an enhanced sensing performance compared with SnO2, and notably, CuO/SnO2 with size less than 1 μm has obvious high selectivity in the detection of 100 ppm TEA. Particularly, it has a high response and stability to 1 and 5 ppm TEA (S is 8 and 33), and that is higher than SnO2 material, suggesting 3D laminated CuO/SnO2 is an effective candidate material served as sensor platform to detect low-concentration amines.  相似文献   

17.
An infrared reflection-absorption (IR/RA) method was developed to detect aromatic organic compounds in aqueous solutions where the required sample volume can be as low as 50 microL. Two aluminum plates were used to form the sampling cell for the detection of small amount of aqueous samples. One plate was used as an IR reflection substrate and a second plate, in which several holes were drilled, was placed tightly on the top of the reflection plate to form cavities for sampling. The cavities were further coated with hydrophobic film. After the hydrophobic film dried, a certain amount of aqueous sample was injected to the cavity. Analytes in the aqueous solution were attracted into the hydrophobic film through the solid phase micro-extraction principle. After residual water was removed from the cavity, organic compounds absorbed by the hydrophobic film could be sensed using IR radiation based on the reflection-absorption mode. To investigate the applicability of this type of sensing method for small-volume detection, factors such as the volume of the aqueous solution, the sample concentration, size of the cavity and the sensitivity of this method were investigated. An examination of the linear relationship between the signals and the analyte concentrations showed regression coefficients that were generally in the range of 0.992 to 0.999 for the examined analytes in the concentration range of 10 to 100 ppm. Under the condition that the sample volume was 100 microL and based on three-times the spectra noise level, the calculated detection limits for this method were found at around 1 ppm for the examined analytes.  相似文献   

18.
Capillary electrophoresis (CE) coupled to ion trap mass spectrometry (MS) was evaluated for the separation and identification of chemical warfare agent degradation products (alkylphosphonic acids and alkyl alkylphosphonic acids). Different analytical parameters were optimized in negative ionization mode such as electrolyte composition (15 mM CH(3)COONH(4), pH 8.8), sheath liquid composition (MeOH/H(2)O/NH(3), 75:25:2, v/v/v), nebulization and ion trapping conditions. A standard mixture of five alkylphosphonic (di)acids and five alkyl alkylphosphonic (mono)acids containing isomeric compounds was used in order to evaluate CE selectivity and MS identification capability. The obtained electropherograms revealed that CE selectivity was very limited in the case of alkyl alkylphosphonic acid positional isomers, whereas isomeric isopropylphosphonic and propylphosphonic acids were baseline-separated. CE-MS-MS experiments provided an unambiguous identification of each isomeric co-migrating alkyl alkylphosphonic acids thanks to the presence of specific fragment ions. On the other hand, CE separation was mandatory for the identification of isomeric alkylphosphonic acids, which led to the same fragment ion and could not be differentiated by MS-MS. The developed method was applied to the analysis of soil extracts spiked with the analytes (before or after extraction treatment) and appeared to be very promising since resolution and sensitivity were similar to those observed in deionized water. Especially, analytes were detected and identified in soil extract spiked at 5 microg mL(-1) with each compound before extraction treatment.  相似文献   

19.
A simple dual vessel in situ analyte distillation (IAD) system has been developed for suppressed ion chromatographic determination of chloride and fluoride ions in complex matrices. In IAD system, water vapours generated from the outer vessel reacts with sulfuric acid generating heat, thus favouring the quantitative distillation of chloride and fluoride within 30 min on water bath temperature (approximately 80 degrees C). The distilled analytes, as their respective acids in water, were directly injected into an ion-chromatograph. This newly developed method has been applied for analysis of trace impurities in H2SO4, H3PO4 and H3BO3. The detection limits for chloride is 8, 80 and 70ppb (w/w) for H2SO4, H3PO4 and H3BO3, respectively. For fluoride the detection limits are 6 and 60 ppb (w/w) for H2SO4 and H3PO4, respectively. The recovery of spikes for both the analytes ranged between 87 and 100%.  相似文献   

20.
Procedures for the determination of mercury and silver by displacement of diethyldithiocarbamate (DDTC) from its copper complex in the presence of 1% Triton X-100, and measurement of the decrease in the Cu(DDTC)(2) absorbance, are described. The use of the surfactant avoids the need for an extraction step. Reproducibility within 1% and detection limits of 0.25 ppm Hg(II) and 0.45 ppm Ag(I) have been obtained, and linear calibration ranges up to 13 ppm Hg(II) and 15 ppm Ag(I). In the presence of 0.1M EDTA very good selectivity is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号