首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Heterometallic cuboidal clusters [Mo(3)S(4)M(H(2)O)(9)Cl](3+) M = Pd or Ni react with the trivacant [AsW(9)O(33)](9-) anion to give tetramodular complexes [(H(2)AsW(9)O(33))(4){Mo(3)S(4)M(H(2)O)(5)}(2)](20-) (M = Pd for anion 2 and M = Ni for anion 3) in good yield. Both anions crystallized as single crystals of potassium salts to give K-2 and K-3 salts which have been characterized structurally by X-ray diffraction. Both compounds are isomorphous and the anions 2 and 3 are described as two dimeric moeties, associated by internal hydrogen bonds, electrostatic interactions involving four outer potassium ion and coordination bonds within a central {M(2)S(2)} unit containing a M-M metallic bond. Studies in solution reveal that the dimeric association is maintained in solution in the 2 × 10(-4)-2 × 10(-3) mol L(-1) range. Conversely, in the presence of exogeneous ligands, such as iodide or pyridine the UV-vis data are consistent with the dissociation of the anion 2 into monomer through a Pd-L coordination bond (L = I(-) or Py). Furthermore, (183)W NMR spectrum of 2 shows that molecular structure of 2 is retained in solution. Elemental analysis and IR are also supplied. Electrochemical behavior of 2 and 3 are given and compared with the Pd or Ni free parent anion. The CVs are dominated mainly by irreversible reduction or oxidation processes, where the peak potentials appear dependent upon the ionic charge of the complex. However, the CV of the Pd-containing anion (2) is consistent with the deposition of Pd metal at the electrode, which gives rise to an oxidation process into palladium oxide.  相似文献   

2.
The chemical system based on the [Mo(2)O(2)S(2)(OH(2))(6)](2+) aqua cation (noted L) and the trivacant [AsW(9)O(33)](9-) polyoxometalate (noted POM) has been investigated. Depending upon the ionic strength and the nature of the alkali cations, these complementary components assemble to yield three different architectures derived as hexamer (1), tetramer (2), and dimer (3). This series of clusters displays the same stoichiometry {POM(6)L(9)}(36-), {POM(4)L(6)}(24-), and {POM(2)L(3)}(12-) for 1, 2, and 3, respectively, and their conditions of formation differ mainly by the nature and the concentration of the alkali cation (from Li to Cs). Structural characterizations of 1 reveal a large hexameric supramolecular scaffold (about 25 ? in diameter), which encloses a large internal hole (about 200 ?(3)) filled by water molecules and alkali cations (Na(+) or K(+)). The hexameric scaffold 1 exhibits a rare flexibility property evidenced in the solid state by two distinct conformations, either eclipsed (1a) or staggered-off (1b). Both conformations appear clearly separated by a large twist angle (~40°) and depend mainly on the composition of the internal hole. Structure of anion 2 shows a tetrahedral arrangement where the four POM units and the six connecting {Mo(2)O(2)S(2)} linkers are located at the corners and at the edges, respectively. The structure of anion 3 corresponds to the simplest arrangement, described as a dimeric association of two POM units linked by three {Mo(2)S(2)O(2)} pillars. Stability of the hexameric scaffold has been investigated in solution by (183)W and (39)K NMR and by UV-vis, showing that stability of 1 depends strongly on the proportion of potassium ions, which interfere through host-guest exchange. Density functional methodology (DFT) has been applied to compute the geometries and energies of dimer (3), tetramer (2) and hexamer (1) based on {AsW(9)O(33)} (POM) and {Mo(2)O(2)S(2)} (L) units. Calculations tend to show that internal cations act as "glue" to maintain the POM units connected through the conformationally inward-directed {Mo(2)O(2)S(2)} linkers.  相似文献   

3.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

4.
A novel organotin-substituted polyoxomolybdate cluster (H(3)O)(16)[(H(2)O)(2)Mo(V)O(OH)](2){Mo(VI)(28)Mo(II)(4)(NO)(4)(BuSnO)(2)[BuSn(OH)(2)](2)O(102)(H(2)O)(12)}.18H(2)O was synthesized in a 'one-pot' reaction by adopting the reduction-oxidation-reconstitution self-assembly process, which shows a {Mo(34)(NO)(4)Sn(4)} mixed metal skeleton, which is constructed from two {Mo(16)(NO)(2)Sn(2)} subunits being linked by two MoO(6) octahedra.  相似文献   

5.
A series of lanthanide-organic framework coordination polymers, {[La(2)(TDC)(2)(NO(3))(H(2)O)(4)](OH)·5H(2)O}(n) (1) and [Ln(TDC)(NO(3))(H(2)O)](n) (TDC = thiophene- 2, 5- dicarboxylic acid; Ln = Nd(2), Sm(3), Eu(4), Gd(5), Tb(6), Dy(7), Ho(8), Er(9), Yb(10)) have been synthesized by solvothermal reaction and characterized by elemental analysis, FT-IR, TG analysis, single-crystal X-ray diffraction and power X-ray diffraction. The single-crystal X-ray diffraction analysis results show that 1 displays a 3-D porous framework with (3,7)-connected {4(10).6(11)}{4(3)} topology. The compounds 2-10 crystallized in the same P2(1)/c space group and exhibits a (3,6)-connected {4.6(2)}(2){4(2).6(10).8(3)} topology, Right-handed and left-handed helical chains coexist in the 2-D layer structure. The luminescence properties of 2-10 and the magnetic properties of 5,7,8,9 were investigated.  相似文献   

6.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

7.
The reaction of [Sb(2)W(22)O(74)(OH)(2)](12-) and [Fe(4)(H(2)O)(10)(β-TeW(9)O(33))(2)](4-) with (NH(4))(2)[RuCl(6)] in aqueous solution resulted in the novel ruthenium(IV)-containing polyanions [{Ru(IV)(4)O(6)(H(2)O)(9)}(2)Sb(2)W(20)O(68)(OH)(2)](4-) and [{Ru(IV)(4)O(6)(H(2)O)(9)}(2){Fe(H(2)O)(2)}(2){β-TeW(9)O(33)}(2)H](-), exhibiting two cationic, adamantane-like, tetraruthenium(IV) units {Ru(4)O(6)(H(2)O)(9)}(4+) bound to the respective polyanion in an external, highly accessible fashion.  相似文献   

8.
Three supramolecular materials based on different poly(oxomolybdophosphate) clusters, (H(2)imi)(6)(Himi)(4)[{Sr(H(2)O)(4)}(2){Sr ? P(6)Mo(4)(V)Mo(14)(VI)O(73)}(2)]·17H(2)O (1), (H(2)(4,4'-bpy))(2)[Cu(2)Sr(2)Mo(12)O(24)·(OH)(6)(H(2)O)(6)(H(2)PO(4))(2)(HPO(4))(2)(PO(4))(4)]·5H(2)O (2), and (H(2)bim)(H(2)bim)[SrP(2)Mo(5)O(23)(H(2)O)(3)]·2H(2)O (3) (imi = imidazole, 4,4'-bpy = 4,4'-bipyridine, and bim = 2,2'-biimidazole), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV-vis, XPS and the single-crystal X-ray diffraction. Compound 1 is made up of unusual basket-shape [Sr ? P(6)Mo(18)O(73)](10-) cages linked by [Sr(H(2)O)(4)](2+) fragments to yield unprecedented dimeric chains, which represent the first 1-D assemblies of basket-type POMs. Compound 2 exhibits a novel string constructed from sandwich-like [Cu(P(4)Mo(6)O(31))(2)] units and {Sr(2)Cu} trinuclear linkers. Compound 3 is the first chain of Strandberg-type polyoxoanions connected by Sr(2+) cations. All the 1-D chains are further packed into various 3-D supramolecular assemblies via strong hydrogen-bonding interactions. The electrochemical and electrocatalysis behavior of 1, 2, and 3-CPE have been investigated in detail.  相似文献   

9.
Novel molybdenum dithiolene compounds having neighboring amide groups as models for molybdoenzymes, (NEt(4))(2)[Mo(IV)O{1,2-S(2)-3,6-(RCONH)(2)C(6)H(2)}(2)] (R = CH(3), CF(3), t-Bu, Ph(3)C), were designed and synthesized. The contributions of the NH...S hydrogen bond to the electrochemical properties of the metal ion and the reactivity of the O-atom-transfer reaction were investigated by a comparison with [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-). The MoOS(4) core of [Mo(IV)O{1,2-S(2)-3,6-(CH(3)CONH)(2)C(6)H(2)}(2)](2)(-) shows no significant geometrical difference from that of [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-) in the crystal. The hydrogen bonds positively shifted the Mo(IV/V) redox potential and accelerated the reduction of Me(3)NO.  相似文献   

10.
The condensation reaction of resorcinol with cis-[ClP(μ-N(t)Bu)(2)PN(H)(t)Bu] produced a difunctional derivative 1,3-C(6)H(4)[OP(μ-N(t)Bu)(2)PN(H)(t)Bu](2) (1), whereas the similar reaction with [ClP(μ-N(t)Bu)](2) resulted in the formation of a 1:1 mixture of dimeric and tetrameric species, [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (2a) and [{P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](4) (2b), which were separated by repeated fractional crystallization and column chromatography. The reaction of dimer 2a with H(2)O(2) and selenium produces tetrachalcogenides [{(O)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (3) and [{(Se)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (4), respectively. The reaction between the dimer (2a) and [Pd(μ-Cl)(η(3)-C(3)H(5))](2) or AuCl(SMe(2)) yielded the corresponding tetranuclear complexes, [{((Cl)(η(3)-C(3)H(5))Pd)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (5) and [{(ClAu)P(μ-N(t)Bu)}(2){1,3-(O)(2)-C(6)H(4)}](2) (6) in good yield. The complexes 5 and 6 are the rare examples of phosphorus macrocycles containing two or more exocyclic transition metal fragments. Treatment of 1 with copper halides in 1:1 molar ratio resulted in the formation of one-dimensional (1D) coordination polymers, [(CuX){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}}(2)](n) (7, X = Cl; 8, X = Br; 9, X = I), which showed the helical structure in solid state because of intramolecular hydrogen bonding, whereas similar reactions of 1 with 4 equiv of copper halides also produced 1D-coordination polymers, [(Cu(2)X(2))(2){1,3-C(6)H(4){OP(μ-N(t)Bu)(2)PN(H)(t)Bu}(2)}](n) (10, X = Cl; 11, X = Br; 12, X = I), but containing Cu(2)X(2) rhomboids instead of CuX linkers. The crystal structures of 1, 2a, 2b, 4, 7-9, and 12 were established by X-ray diffraction studies.  相似文献   

11.
Two neutral silver(I)-phenylethynide clusters incorporating the [((t)BuPO(3))(4)V(4)O(8)](4-) unit as an integral shell component, namely {(NO(3))(2)@Ag(16)(C≡CPh)(4)[((t)BuPO(3))(4)V(4)O(8)](2)(DMF)(6)(NO(3))(2)}·DMF·H(2)O and {[(O(2))V(2)O(6)](3)@Ag(43)(C≡CPh)(19)[((t)BuPO(3))(4)V(4)O(8)](3)(DMF)(6)}·5DMF·2H(2)O, have been isolated and characterized by X-ray crystallography. The central cavities of the Ag(16) and Ag(43) clusters are occupied by two NO(3)(-) and three [(O(2))V(2)O(6)](4-) template anions, respectively.  相似文献   

12.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

13.
Carbophosphazene-based coordination ligands [{NC(NMe(2))}(2){NP(3,5-Me(2)Pz)(2)}] (1), [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(3,5-Me(2)Pz)(2)}] (2), [NC(3,5-Me(2)Pz)](2)[NP(3,5-Me(2)Pz)(2)] (3), [{NCCl}(2){NP(NC(NMe(2))(2))(2)}] (4), and [{NC(p-OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}] (5) were synthesized and structurally characterized. In these compounds, the six-membered C(2)N(3)P ring is perfectly planar. The reaction of 1 with CuCl(2) afforded [{NC(NMe(2))}(2){NHP(O)(3,5-Me(2)Pz)}·{Cu(3,5-Me(2)PzH)(2)(Cl)}][Cl] (6). The ligand binds to Cu(II) utilizing the geminal [P(O)(3,5-Me(2)Pz)] coordinating unit. Similarly, the reaction of 2 with PdCl(2) afforded, after a metal-assisted P-N hydrolysis, [{NC(NEt)(2)}{NC(3,5-Me(2)Pz)}{NP(O)(3,5-Me(2)Pz)}·{Pd(3,5-Me(2)PzH)(Cl)}] (7). In the latter, the [P(O)(3,5-Me(2)Pz)] unit does not coordinate; in this instance, the Pd(II) is bound by a ring nitrogen atom and a carbon-tethered pyrazolyl nitrogen atom. The reaction of 3 with PdCl(2) also results in P-N bond hydrolysis affording [{NC(3,5-Me(2)Pz)(2)}{NP(O)(3,5-Me(2)Pz)}{Pd(Cl)}] (8). In contrast to 7, however, in 8, the Pd(II) elicits a nongeminal η(3) coordination from the ligand involving two carbon-tethered pyrazolyl groups and a ring nitrogen atom. Metalated products could not be isolated in the reaction of 3 with K(2)PtCl(4). Instead, a P-O-P bridged carbodiphosphazane dimer, [{NC(3,5-Me(2)Pz)NHC(3,5-Me(2)Pz)}{NP(O)}](2) (9), was isolated as the major product. Finally, the reaction of 5 with PdCl(2) resulted in [{NC(OC(5)H(4)N)}(2){NP(NC(NMe(2))(2))(2)}·{PdCl(2)}] (10). In the latter, the exocyclic P-N bonds are quite robust and are involved in binding to the metal ion. Compounds 6-10 have been characterized by a variety of techniques including X-ray crystallography. In all of the compounds, the bond parameters of the inorganic heterocyclic rings are affected by metalation.  相似文献   

14.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

15.
The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.  相似文献   

16.
The tricarbonyl [Mn(CO)(3){HC(pz')(3)}][PF(6)] 1(+)[PF(6)](-) (pz' = 3,5-dimethylpyrazolyl) reacts with a range of P-, N- and C-donor ligands, L, in the presence of trimethylamine oxide to give [Mn(CO)(2)L{HC(pz')(3)}](+) {L = PEt(3)3(+), P(OEt)(3)4(+), P(OCH(2))(3)CEt 5(+), py 6(+), MeCN 7(+), CNBu(t)8(+) and CNXyl 9(+)}. The complex [Mn(CO)(2)(PMe(3)){HC(pz')(3)}](+)2(+) is formed by reaction of 7(+) with PMe(3). Complexes 2(+) and 6(+) were structurally characterised by X-ray diffraction methods. Reaction of 7(+) with half a molar equivalent of 4,4'-bipyridine gives a purple compound assumed to be the bridged dimer [{HC(pz')(3)}Mn(CO)(2)(μ-4,4'-bipy)Mn(CO)(2){HC(pz')(3)}](2+)10(2+). The relative electron donating ability of HC(pz')(3) has been established by comparison with the cyclopentadienyl and tris(pyrazolyl)borate analogues. Cyclic voltammetry shows that each of the complexes undergoes an irreversible oxidation. The correlation between the average carbonyl stretching frequency and the oxidation potential for complexes of P- and C-donor ligands is coincident with the correlation observed for [Mn(CO)(3-m)L(m)(η-C(5)H(5-n)Me(n))]. The data for complexes of N-donor ligands, however, are not coincident due to the presence of a node (and phase change) between the metal and the N-donor in the HOMO of the complex as suggested by preliminary DFT calculations.  相似文献   

17.
The first heterometallic copper-cerium polyoxometalate, [{Ce(IV)(OAc)}Cu(II)(3)(H(2)O)(B-α-GeW(9)O(34))(2)](11-) (1), is composed of an unprecedented copper(II)-trisubstituted Weakley-type tungstogermanate subunit stabilized by coordination of a {Ce(OAc)}(3+) group at the vacant position. The title species contains a central {Ce(IV)Cu(II)(3)O(18)} rhomblike cluster that belongs to a new {(4f(ext))(3d(ext))(3d(int))(2)} type and magnetically behaves as a triangular Cu(3) system with overall antiferromagnetic exchange affected by the structural distortions the vicinity of diamagnetic Ce(IV) induces.  相似文献   

18.
Hydrothermal conditions have been used in the preparation of a series of organic-inorganic hybrid materials of the cobalt-molybdophosphonate family. The reactions of MoO(3), cobalt(II) acetate or cobalt(II) acetylacetonate, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))nPO(3)H(2) (n = 1-5 and 9) of varying tether lengths yielded compounds of the general type {Co(2)(tpyprz)(H(2)O)(m)}4+/MoxOy{O(3)P(CH(2))(n)PO(3)}z. The recurring theme of the structural chemistry is the incorporation of {Mo(5)O(15)(O(3)PR)(2)}(4-) clusters as molecular building blocks observed in the structures of nine phases (compounds 2-9 and 11). The structural consequences of variations in reaction conditions are most apparent in the series with propylene diphosphonate, where four unique structures 4-7 are observed, including two distinct three-dimensional architectures for compounds 5 and 6 whose formulations differ only in the number of water molecules of crystallization. With pentyldiphosphonate, a second phase 10 is obtained which exhibits a unique cluster building block, the hexamolybdate [Mo(6)O(18){O(3)P(CH(2))(5)PO(3)}](4-). In the case of methylenediphosphonic acid, a third structural motif, the trinuclear {(Mo(3)O(8))(O(3)PCH(2)PO(3))}2- subunit, is observed in compound 1. The structural chemistry of compounds 1-11 of this study is quite distinct from that of the {Ni(2)(tpyprz)(H(2)O)(m)}(4+)/Mo(x)O(y){O(3)P(CH(2))(n)PO(3)}z family, as well as that of the copper-based family. The structural diversity of this general class of materials reflects the coordination preferences of the M(II) sites, the extent of aqua ligation to the M(II) sites, the participation of both phosphate oxygen atoms and molybdate oxo-groups in linking to the M(II) sites, and the variability in the number of attachment sites at the molybdophosphonate clusters. Since the charge densities at the peripheral oxygen atoms of the clusters are quite uniform, the attachment of {M(2)(tpyprz)}(4+) subunits to the molybdophosphonates appears to be largely determined by steric, coulombic, and packing factors, as shown by extensive density functional theory calculations.  相似文献   

19.
Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).  相似文献   

20.
Two new {P(8)W(48)} wheel-based compounds, Na(12)Li(16){[Cu(H(2)O)](2)[Cu(4)(OH)(4)(H(2)O)(8)](2)P(8)W(48)O(184)}·55H(2)O (1), and K(4)Na(24)Li(10){(MoO(2))(2)(P(8)W(48)O(184))}·61H(2)O (2) have been synthesized by a conventional aqueous solution method, and characterized by UV, IR, TG analysis, XPRD, (31)P NMR, XPS, single-crystal X-ray diffraction analyses, magnetic study and electrochemistry study. In compound 1, a wheel-type {P(8)W(48)} containing two {Cu(4)} clusters and two isolated Cu cations results in a 10-Cu-containing polyoxotungstate, which represents the first {P(8)W(48)}-based compound trapping two transition metal (TM) clusters in its inner cavity. Further, the polyoxoanion was connected by Na(+) and Li(+) cations into a 3D framework. Compound 2 is a 2-Mo-containing {P(8)W(48)}-based polyoxotungstate. Magnetic study indicates that antiferromagnetic interactions exist in compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号