首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, using the B3LYP functional and CCSD(T) method with 6-311++G** basis set, the harmonic and anharmonic rate constants in the unimolecular dissociation of ethyl propanoate have been calculated using Rice–Ramsperger–Kassel–Marcus theory. The anharmonic rate constants of the title reaction have also been examined, the comparison shows that, the anharmonic effect especially in the case of high total energies and temperature for channels 3 to 6 is significant, so that the anharmonic effect cannot be neglected for unimolecular dissociation reaction of CH3CH2C(=O)OCH2CH3 both in microcanonical and canonical systems.  相似文献   

2.
3.
In the present work, the detailed reaction mechanism and possible products of the OH-initiated oxidation of CH2=C(CH3)CH2CH2OH (MBO331) have been revealed theoretically for the first time. The potential energy surfaces of various reaction channels both in the absence and presence of O2 and NO are evaluated at the CCSD(T)/6−31++G(d,p)//MP2(full)/6−311G(d,p)+ZPE*0.95 level. The major products of HCHO + CH3C(O)CH2CH2OH predicted for the title reaction in the presence of O2 and NO are in agreement with those of similar reactions of unsaturated alcohols with OH radical.  相似文献   

4.
H-transfers by 4-, 5-, and 6-membered ring transition states to the pi-bonded methylene of CH3CH2CH2NH+=CH2 (1) are characterized by theory and compared with the corresponding transfers in cation radicals. Four-membered ring H-transfers converting 1 to CH3CH2CH=N+HCH3 (2) and CH3N+H=CH2 to CH2=NH+CH3 are high-energy processes involving rotation of the source and destination RHC= groups (R = H or C2H5) to near bisection by skeletal planes; migrating hydrogens move near these planes. The H-transfer 1 --> CH3C+HCH2NHCH3 (3) has a higher energy transition-state than 1 --> 2, in marked contrast to the corresponding relative energies of 4- and 5-membered ring H-transfers in cation-radicals. Six-membered ring H-transfer-dissociation (1 --> CH2=CH2 + CH2=N+HCH3) is a closed shell analog of the McLafferty rearrangement. It has a lower energy transition-state than either 1 --> 2 or 1 --> 3, but is still a much higher energy process than 6-membered ring H-transfers in aliphatic cation radicals. In contrast to the stepwise McLafferty rearrangement in cation radicals, H-transfer and CC bond breaking are highly synchronous in 1 --> CH3N+H=CH2 + CH2=CH2. H-transfers in propene elimination from 1 are ion-neutral complex-mediated: 1--> [CH3CH2CH2+ ---NH=CH2] --> [CH3C+HCH3 NH=CH2] --> CH3CH = CH2 + CH2=NH2+. Intrinsic reaction coordinate tracing demonstrated that a slight preference for H-transfer from the methyl containing the carbon from which CH2=NH is cleaved is due to CH2=NH passing nearer this methyl than the other on its way to abstracting H, i.e., some memory of the initial orientation of the partners accompanies this reaction.  相似文献   

5.
The single crystals of [UO2SO4{(CH3)HNCONH(CH3)}2] (I) were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 6.847(1) Å, b = 14.259(3) Å, c = 14.297(3) Å, β = 93.451(4)°, space group P21/n, Z = 4. The main structural units of crystals I are ribbons whose composition coincides with the composition of the compound. The crystal chemical formula of the complex is AT3M 2 1 (A = UO 2 2+ ).  相似文献   

6.
A new complex [UO2CrO4{CH3CON(CH3)2}2] (I) was studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are monoclinic: a = 13.8108(11) Å, b = 8.6804(7) Å, c = 13.0989(10) Å, β = 104.777(1)°, V = 1518.4(2) Å3, space group P21/c, Z = 4, R = 2.39%. The structure of I contains infinite chains of the [UO2CrO4{CH3CON(CH3)2}2] composition running along [001]; the complex belongs to the AT11M1 2 crystal-chemical group (A = UO 2 2+ , T11 = CrO 4 2? , M1 = CH3CON(CH3)2) of uranyl complexes. The chains are linked into a three-dimensional framework due to hydrogen bonds between oxygen atoms of chromate ions and hydrogen atoms of methyl groups of the dimethylacetamide.  相似文献   

7.
Summary The standard molar enthalpy of formation of methyl methylthiomethyl sulfoxide, CH3(CH3SCH2)SO, at T=298.15 K in the liquid state was determined to be -199.4±1.5 kJ mol-1 by means of oxygen rotating-bomb combustion calorimetry.  相似文献   

8.
Based on the analysis of structural parameters of molecules (Cl3PNCH3)2 (I) and (Cl3PNCH2CH2Cl)2 (II) by the quantum-chemical nonempirical calculations the following was revealed. The structure of I and II dimers has geometric features, which have a decisive influence on the degree of inhibition of positional exchange of the chlorine atoms in the P-Cl fragments known for the chlorine derivatives of pentacoordinated phosphorus atom. The obstacles to this dynamic process in the mentioned intramolecular dimers is shown to result from the spatial nonvalent interactions due to the short contacts of the chlorine and hydrogen atoms.  相似文献   

9.
The reaction mechanism of CH3SCH2CH3 with OH radical is studied at the CCSD(T)/6-311+G(3df,p)//MP2/6-31+G(2d,p) level of theory. Three hydrogen abstraction channels, one substitution process and five addition–elimination channels are identified in the title reaction. The result shows hydrogen abstraction is dominant. Substitution process and addition–elimination reactions may be negligible because of the high barrier heights. Enthalpies of formation [ \Updeltaf H(298.15\textK)o \Updelta_{f} H_{(298.15{\text{K}})}^{o} ] of the reactants and products are evaluated at the CBS-QB3, G3 and G3MP2 levels of theory, respectively. It is found that the calculated enthalpies of formation by the aforementioned three methods are in consistent with the available experimental data. Rate constants and branching ratios are estimated by means of the conventional transition state theory with the Wigner tunneling correction over the temperature range of 200–900 K. The calculation shows that the formations of P1 (CH2SCH2CH3 + H2O) and P2 (CH3SCHCH3 + H2O) are major products during 200–900 K. The three-parameter expressions for the total rate constant is fitted to be k\texttotal = 1.45 ×10 - 21 T3.24 exp( - 1384.54/T) k_{\text{total}} = 1.45 \times 10^{ - 21} T^{3.24} \exp ( - 1384.54/T) cm3 molecule−1 s−1 from 200 to 900 K.  相似文献   

10.
The interaction of ozone with chlorinated methanes adsorbed on a thin ice film was studied over the temperature range 77–292 K. Ozone was shown to oxidize chlorinated methanes starting with 210 K to produce chlorine oxides of various compositions. The products formed in the oxidation of chlorinated methanes with ozone over the temperature range 77–292 K were analyzed by IR Fourier transform spectroscopy. Along with carbon dioxide and water, chlorine oxides in high oxidation states were predominantly formed.  相似文献   

11.
The hydrogen abstraction reactions from CH3Cl2F (R-141b) and CH3CClF2 (R-142b) by OH radicals are studied theoretically by semi-classical transition state theory. The stationary points for the reactions are located by using KMLYP density functional method along with 6-311++G(2d,2p) basis set and MP2 method along with 6-311+G(d,p) basis set. Single-point energy calculations are performed by the CBS-Q and G4 combination methods on the geometries optimized at the KMLYP/6-311++G(2d,2p) level of theory. Vibrational anharmonicity coefficients, x ij , which are needed for semi-classical transition state theory calculations, are computed at the KMLYP/6-311++G(2d,2p) and MP2/6-311+G(d,p) levels of theory. The computed barrier heights are slightly sensitive to the quantum-chemical method. Thermal rate coefficients are computed over the temperature range from 200 to 2000 K and they are shown to be in accordance with available experimental data. On the basis of the computed rate coefficients, the tropospheric lifetime of the CH3CCl2F and CH3CClF2 are estimated to be about 6.5 and 12.0 years, respectively.  相似文献   

12.
Acetylenic alcohols bearing two or three methylene groups between the triple bond and hydroxy group react with CH2I2 in the presence of trialkylalanes to give 1,1,2-tri- and 1,1,2,2-tetrasubstituted cyclopropanes.  相似文献   

13.
The structures of pentacoordinate silylenoid PhCH2(NH2)CH3SiLiF were studied by density functional theory at the B3LYP/6-31G(d) level. Three equilibrium structures, the three-membered ring (1), the p-complex (2), and the σ-complex (3) structures, were located. Their energies are in the order of 2 > 1 > 3 both in vacuum and in THF. To exploit the stability of PhCH2(NH2)CH3SiLiF, the insertion reactions of 1 and PhCH2(NH2)CH3Si into C–F have been investigated, respectively. The results show that the insertion of PhCH2(NH2)CH3Si is more favorable. To probe the influence of amine-coordination to the stability of PhCH2(NH2)CH3SiLiF, the insertion reaction of PhCH3CH3SiLiF was also investigated. The calculations indicate that the insertion of PhCH3CH3SiLiF is more favorable than that of 1. So the N atom plays an important role on the stability of silylenoid PhCH2(NH2)CH3SiLiF.  相似文献   

14.
The molecular structure of axial and equatorial conformer of the 1-chloro-1-silacyclohexane molecule, CH2(CH2CH2)2SiH-Cl, as well as thermodynamic equilibrium between these species were investigated by means of gas-phase electron diffraction and quantum chemistry on the MP2(full)/AUG-cc-PVTZ level of theory. According to electron diffraction data, the compound exists in the gas-phase as a mixture of conformers possessing the chair conformation of the six-membered ring and Cs symmetry and differing in the axial and equatorial position of the Si-Cl bond at 352 K. NBO analysis revealed that axial conformer of 1-chloro-1-silacyclohexane molecule is an example of the stabilization of the form that is unfavorable from the point of view steric effects and effects of conjugations and that stabilization is achieved due to electrostatic interactions.  相似文献   

15.
Four kinds of polythiophenes have been doped with CH3SO3H in CHCl3 under air, oxygen, and nitrogen. In the doping of two types of poly(3-hexylthiophene)s, P3HexTh(Zn/Ni) and P3HexTh(Fe) with different contents of a head-to-tail unit, the p-doping occurs at a similar rate. The reaction between poly(3-dodecylthiophene), P3DodTh, and the acid takes place more rapidly. P3OBuTh with a butoxy substituent undergoes more facile p-doping and receives photochemical reaction with CHCl3, and this reaction obeys a pseudo-first-order rate law with a rate constant kobs of 1.42×10-5 s-1 at room temperature.  相似文献   

16.
The potential energy surfaces of the (CH3)nH3?n M+ ions, where n = 1, 2; M = Si, Ge, were scanned using the B3LYP method with 6–31G* and aug-cc-pVDZ basis sets. The major attention was given to isomeric species having the form of complexes of the HM+ and CH3M+ ions with hydrogen, methane, and ethane molecules. These species were characterized previously neither by experimental nor by theoretical methods. It was found that these species become more stable in going from Si to Ge; the complex [CH3Ge+CH4] is the second isomer in the energy after (CH3)2HGe+. However, the heights of the activation barriers to formation of these complexes from the most stable isomer, though decreasing in going from Si to Ge, remain relatively high and, what is particularly important, somewhat exceed the activation barrier to formation of the complex [H3Ge+·C2H4].  相似文献   

17.
The reaction mechanism of (CH3)3CO. radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO⇔(CH3)3CO.+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO. radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO. radical.  相似文献   

18.
(7Li, 1H) NMR and impedance spectroscopy methods are used to study the ion mobility and conductivity in a complex of the composition Li(NH3CH2COO)(NO3) (I), which has a layered crystal structure. The character of ion motions in lithium and proton sublattices with temperature variation is considered; the types of motions and temperature ranges in which they occur are determined. It is found that above 350 K the dominant process in the lithium sublattice of the compound is Li+ ion diffusion. Possible migration paths of lithium ions in the lattice of the compound are analyzed. The specific conductivity of the compound is found to be 2.4×10–6 S/cm at 393 K.  相似文献   

19.
The vibrational spectra of a series of HF solutions in acetone (1:20–8.9:1) are analyzed with the help of special techniques. It is shown that three types of strong heteroassociates (HAs) with 1:1, 4:1, and ≥10:1 stoichiometric ratios of the molecules are formed in the HF-(CH3)2CO binary liquid system. The concentration ranges of the existence of HAs in the solution and the stretching vibrational frequency of their constituent HF molecules are estimated. The density functional method (B3LYP/6-31++G(d,p)) is used to calculate the optimal configurations and IR spectra of the (HF) m ·((CH3)2CO) n molecular complexes (m = 1, 2, 4, 8, n = 1, 2) of different structure. The relative stability of the latter is studied. By comparing the calculated and experimental data, the composition (2:2 and 4:1) and structure of two types of HAs are determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号