首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new series of ionic liquids composed of three cyclic sulfonium cations and four anions has been synthesized and characterized. Their physicochemical properties, including their spectroscopic characteristics, ion cluster behavior, surface properties, phase transitions, thermal stability, density, viscosity, refractive index, tribological properties, ion conductivity, and electrochemical window have been comprehensively studied. Eight of these salts are liquids at room temperature, at which some salts based on [NO3]? and [NTf2]? ions exhibit organic plastic crystal behaviors, and all the saccharin‐based salts display relatively high refractive indices (1.442–1.594). In addition, some ionic liquids with the [NTf2]? ion exhibit peculiar spectroscopic characteristics in FTIR and UV/Vis regions, whilst those salts based on the [DCA]? ion show lower viscosities (34.2–62.6 mPa s at 20 °C) and much higher conductivities (7.6–17.6 mS cm?1 at 20 °C) than most traditional 1,3‐dialkylimidazolium salts.  相似文献   

2.
Synthesis and physicochemical properties of four pyridinium‐based ionic liquids (ILs), N‐propylpyridinium bromide [N‐propylPyr]+[Br], N‐isopropylpyridinium bromide [N‐isopropylPyr]+[Br], N‐propylpyridinium hexafluorophosphate [N‐propylPyr]+[PF6], and N‐isopropylpyridinium hexafluorophosphate [N‐isopropylPyr]+[PF6] are reported. The molecular structures of these compounds were characterized by FT‐IR, 1H, 19F, and 31P NMR, spectroscopy. The thermal properties, conductivity, and solubility of these ionic liquids were also investigated. The effects of propyl and isopropyl alkyl lateral chain at the N‐position of pyridinium cation on the thermal stability, conductivity, and solubility of ionic liquids are discussed. The results obtained confirmed that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low melting points, immiscible with water, and their conductivities are mainly influenced by mobility of ions.  相似文献   

3.
We present the synthesis and thorough characterization of ionic liquids and organic salts based on hydrochalcogenide HE? (E=S, Se, Te) anions. Our approach is based on halide‐, metal‐, and water‐free decarboxylation of methylcarbonate precursors under acidic conditions, resulting from the easily dissociating reagents H2E. The compounds were characterized by elemental analysis, multinuclear NMR spectroscopy, thermal and single‐crystal XRD analyses. The hydrosulfide salts were investigated with respect to their ability to dissolve elemental sulfur in varying stoichiometry. Thus‐prepared polysulfide ILs were also analyzed by UV/Vis spectroscopy and cyclic voltammetry.  相似文献   

4.
Three chromium ternary complexes with metformin (met) as a primary ligand and bipyridine (bipy) or ortho‐phenylenediamine (opda) or ortho‐phenanthroline (phen) as secondary ligand were synthesized. These complexes [Cr (Cl)2(Hmet)(bipy)]‐( 1 ), [Cr (Cl)2(Hmet)(opda)]‐( 2 ) and [Cr (Cl)2(Hmet)(phen)]‐( 3 ) were characterized by LC–MS, elemental analysis, molar conductance, thermal analysis, infrared spectroscopy, electronic spectroscopy. The geometrical structures have been found to be octahedral. Degradation pattern of the compounds is shown by thermal studies. The Kinetic parameters‐ energy of activation (Ea), enthalpy (ΔH), entropy (ΔS) and free energy changes (ΔG) have been determined by thermogravimetric data. Coats‐Redfern integration method with thirteen kinetic models was used to calculate the kinetic and thermodynamic parameters for the degradation of all the complexes. The stabilities of the complexes were obtained from their molecular orbital structures from which the quantum chemical parameters were calculated using the HOMO‐LUMO energies. UV–Visible absorption, fluorescence, and viscosity measurements have been conducted to assess the interaction of the complexes with CT DNA. The complexes showed absorption hyperchromism in its UV–Vis spectrum with DNA. The binding constants Kb from UV–Vis absorption studies were 3.1x104, 4.4x104, 5x104 M?1 for 1, 2, 3 respectively and Stern–Volmer quenching constants (Ksq) from fluorescence studies were 0.137, 0.532, 0.631 for 1, 2, 3 respectively. Finally, viscosity measurements revealed that the binding of the complexes with CT‐DNA could be surface binding, mainly due to groove binding. The activity of complexes towards DNA cleavage decrease in the order of 3 > 2 > 1.The light switching properties of the complexes were also evaluated. The complexes were docked in to B‐DNA sequence, 5′(D*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)‐3′ retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software.  相似文献   

5.
Nine new ionic liquids based on small asymmetric trialkylsulfonium cations with TFSI anion were prepared and characterized. Physical and electrochemical properties of these ionic liquids, including melting point, thermal stability, viscosity, conductivity and electrochemical window were determined. Reducing symmetry of cations reduces the melting points of these ILs. Some of these hydrophobic ionic liquids showed low-viscosity and low-melting point characteristics. The viscosities of S223TFSI, S221TFSI and S123TFSI were 33, 36 and 39 mPa s at 25 °C, respectively. Electrochemical and thermal stabilities of these ILs permitted them to become promising electrolytes used in electrochemical devices.  相似文献   

6.
The piano‐stool half‐metallocenium cations [Fe(C5R5)(CO)2 L ]+ (C5R5=C5H5, C5Me5, C5Me4Et; L =1‐pentene, nBuCN, MeCN, Me2S, NH3, NMe3, pyridine) provide ionic liquids (ILs) with the bis(trifluoromethanesulfonyl)imide (Tf2N) anion without introducing long alkyl chains. Their melting points are affected by molecular symmetry, and their thermal stabilities reflect the strength of the metal–ligand bonding. These are reactive liquids that show solventless ligand exchange reactions by gas absorption. The direction of the ligand‐exchange reaction is correlated with the stabilities. Based on the variation of the melting points, these ILs undergo transformations between the liquid and solid phases associated with the reaction.  相似文献   

7.
Thermal decomposition onset temperatures have been measured for a total of 24 methylimidazolium, triethanolammonium, and pyridinium type sulfonic acid groups functionalized Brönsted acidic ionic liquids with Cl?, Br?, SO4 2?, PO4 3?, BF4 ? , CH3CO2 ?, and CH3SO3 ? anions, using thermogravimetric analysis. Thermal stabilities of these sulfonic acid group functionalized ionic liquids decreases in the order, methylimidazolium > triethanolammonium > pyridinium. The methylimidazolium, pyridinium, and triethanolammonium ionic liquids investigated showed decomposition onset temperatures (air) in the 213–353, 167–240, and 230–307 °C ranges, respectively. Additionally, the decomposition temperatures of these ionic liquids are highly dependent on the nature of the anion.  相似文献   

8.
 Unsymmetric metallophthalocyanines (M=Zn, Co, Ni) carrying alkylthio and acetyloxyethylthio groups on peripheral positions were prepared from 4,5-bis-alkylthio-phthalonitrile, 4,5-bis-(acetyloxyethylthio)-phthalonitrile, and the corresponding anhydrous metal salts Zn(CH3COO)2, NiCl2, and CoCl2. The extremely soluble compounds were characterized by their IR, 1H NMR, and UV/Vis spectra. Their long wavelength absorption band was found to be bathochromically shifted; their solubility is superior to that of symmetrical phthalocyanines.  相似文献   

9.
To improve the ultraviolet resistance and thermal stability of waterborne polyurethane, stable waterborne polyurethane/nano-cerium oxide hybrid dispersions were obtained by adding nano-cerium colloids to previously synthesized waterborne polyurethane dispersions. The dried ceria colloid was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The XRD results indicated the prepared CeO2 was a face-centered cubic structure. The prepared polyurethane/CeO2 dispersions were studied by dynamic light scattering (DLS), transmission electron microscopy (TEM), UV–Vis spectroscopy and accelerated weathering test. The dried polyurethane/CeO2 films were characterized using thermogravimetric analysis (TGA). The DLS analysis indicated the particles average diameter of hybrids emulsion was bigger than that of the pure waterborne polyurethane dispersion. TG analysis and accelerated weathering test suggested the hybrid latex films had better thermal stability and mechanical properties than those of the pure waterborne polyurethane. The UV–Vis absorption capacity of the dispersions prepared was increasing with the amount of CeO2 colloid increased.  相似文献   

10.
Two polydentade Schiff base ligands and their Ru(III), Cr(III) and Fe(III) complexes were synthesized and characterized by elemental analysis (C, H, N), UV/Vis, FT IR, 1H and 13C NMR, LC–MS/MS, molar conductivity and magnetic susceptibility techniques. The absorption bands in the electronic spectra and magnetic moment measurements verified an octahedral environment around the metal ions in the complexes. The thermal stabilities were investigated using TGA. The synthesized complexes were used in the catalytic oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1,4-naphthoquinone; vitamin K3, menadione, 2MNQ; using hydrogen peroxide, acetic acid and sulfuric acid. L1-Fe(III) complex showed very efficient catalytic activity with 58.54% selectivity in the conversions of 79.11%.  相似文献   

11.
A new series of low melting and hydrophobic ionic liquids (ILs) containing the bis[bis(pentafluoroethyl)phosphinyl]imide anion, [(C2F5)2P(O)]2N (FPI), and ammonium, phosphonium, imidazolium, pyridinium or pyrrolidinium cations were prepared and characterized. Their density, viscosity, melting point, glass transition temperature, decomposition temperature and conductivity are discussed. Many of these ionic liquids are liquids at room temperature with melting points below 15 °C, viscosities below 110 mm2 s−1 and thermal stabilities above 300 °C.  相似文献   

12.
One benzoindole pentamethine cyanine dye was synthesized and characterized by 1H NMR, IR, MS and UV‐Vis spectra. The UV‐Vis absorption and fluorescence spectra of the dye in chloroform, dimethyl sulfoxide, acetone, ethanol and methanol were investigated, and the λmax of the dye was in the region 682.0–689.0 nm with large molar extinction coefficients (? > 105 M?1cm?1) in different solvents. The structure of the dye was also characterized and analyzed by X‐ray diffraction. Crystallographic data revealed that the dye belonged to orthorhombic, with space group P212121, a = 10.059(2) Å, b = 15.098(4) Å, c = 24.989(6) Å, V = 3794.8(15) Å3, Z = 4. The C‐H···F intermolecular hydrogen bonds were displayed in the molecular system, which were effective in the molecular packing. The aggregation behavior and thermodynamic properties of the dye in aqueous methanol solution were also studied by means of UV‐Vis spectroscopy methods. The results indicated that the dye existed monomer‐dimer equilibrium in aqueous methanol solutions. The fundamental properties of the dye, such as the dimeric association constant KD, the dimeric free energy ΔGD, the dimeric entropy ΔSD, and the dimeric enthalpy ΔHD were determined. The ΔHD of the dye was –46.0 kJ mol?1.  相似文献   

13.
Summary.  Unsymmetric metallophthalocyanines (M=Zn, Co, Ni) carrying alkylthio and acetyloxyethylthio groups on peripheral positions were prepared from 4,5-bis-alkylthio-phthalonitrile, 4,5-bis-(acetyloxyethylthio)-phthalonitrile, and the corresponding anhydrous metal salts Zn(CH3COO)2, NiCl2, and CoCl2. The extremely soluble compounds were characterized by their IR, 1H NMR, and UV/Vis spectra. Their long wavelength absorption band was found to be bathochromically shifted; their solubility is superior to that of symmetrical phthalocyanines. Received July 27, 1999. Accepted (revised) September 30, 1999  相似文献   

14.
Some tetradentate N2O2 Schiff base ligands, such as N,N′-bis(naphtalidene)-1,2-phenylenediamine, N,N′-bis(naphtalidene)-4-methyl-1,2-phenylenediamine, N,N′-bis(naphtalidene)-4-chloro-1,2-phenylenediamine, N,N′-bis(naphtalidene)-4-nitro-1,2-phenylenediamine, N,N′-bis(naphtalidene)-4-carboxyl-1,2-phenylenediamine, and their uranyl complexes were synthesized and characterized by 1H NMR, IR, UV–Vis spectroscopy, TG (thermogravimetry), and elemental analysis (C.H.N.). Thermogravimetric analysis shows that uranyl complexes have very different thermal stabilities. This method is used also to establish that only one solvent molecule is coordinated to the central uranium ion and this solvent molecule does not coordinate strongly and is removed easier than the tetradentate ligand and also trans oxides. The electrochemical properties of the uranyl complexes were investigated by cyclic voltammetry. Electrochemistry of these complexes showed a quasireversible redox reaction without any successive reactions. Also, the kinetic parameters of thermal decomposition were calculated using Coats–Redfern equation. According to Coats–Redfern plots the kinetics of thermal decomposition of the studied complexes is first-order in all stages. Anticancer activity of the uranyl Schiff base complexes against cancer cell lines (Jurkat) was studied and determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide) assay.  相似文献   

15.
The epoxidation of alkenes with hydrogen peroxide catalyzed by [PZnMo2W9O39]5-, ZnPOM, supported on ionic liquid-modified silica, Im-SiO2, is reported. The immobilized catalyst, [ZnPOM@Im-SiO2] was characterized by elemental analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopic methods. This new synthesized hybrid catalyst was applied for efficient epoxidation of various olefins with aqueous H2O2 in acetonitrile under reflux conditions. This solid catalyst can be easily recovered by simple filtration and reused several times without significant loss of its catalytic activity.  相似文献   

16.
-1,4-Dialkyl-1,4-dihydro-1,4-diazine radical cations 1–3 have been established in recent years as unusually stable intermediates of corresponding two-step redox systems. The stability is evident from large comproportionation constants Kc > 1012 and from the isolability of persistent radical cation salts with counter anions such as Br-, I-, I3 -, PF6 -, BPh4-, or (TCNQ2)-. The structures of several crystalline derivatives have been determined, showing planar π systems and, in one instance, an anion-dependent tendency to form π/π dimers. Effects of dimerization are also evident from comparative magnetic susceptibility measurements of 1,4-diethyl-1,4-dihydroquinoxalinium iodide and tetraphenylborate. UV/Vis absorption spectra of the radical cations have been determined and interpreted with the help of molecular orbital calculations. The most simple member of the series, 1,4-diethyl-1,4-dihydropyrazinum radical cation 1, exhibits a long wavelength forbidden band (2B1u2Au) with a conspicuous vibrational fine structure. The results obtained for the small but very stable new radical cations 1 and 2 provide clues to the stability of flavosemiquinone oxidation states in pertinent oxidoreductase enzymes and show ways to new components for the design of materials with anisotropic physical properties.  相似文献   

17.
Due to their excellent characteristics such as carrier transport ability, high electrical conductivity, and mobility, core/shell nanostructure photovoltaic devices have received a lot of interest. In this study, HgI2@CsI core/shell nanoparticles were synthesized by using two-step pulsed laser ablation in liquid (PLAL) at laser fluences of 12.7 and 33.1 J/cm2. The structural and optical properties of the samples were examined using X-ray diffraction (XRD), zeta potential (ZP), energy dispersive X-ray (EDX), transmission electron microscope (TEM), UV–Vis absorption, and photoluminescence spectra. The XRD data conforms to the formation of cubic CsI and tetrahedral and orthorhombic HgI2. The zeta potential results show that the sample prepared at 33.1 J/cm2 has the highest stability. TEM images show the formation of core-shell morphology and the thickness of the shell depends on the laser fluence. UV–Vis results show that the band gap of the core/shell was 3.22 and 3.23 eV for 12.7 and 33.1 J/cm2, respectively. The fluorescence spectra show two emission peaks for two laser fluences. The current-voltage characteristics of the HgI2@CsI/Si heterojunction were measured at dark and illumination, and the maximum On/Off ratio was about 167 for a photodetector prepared at 12.7 J/cm2. The figures of merit of the photodetectors, including responsivity, external quantum efficiency, and detectivity, are measured at room temperature. A responsivity as high as 0.7 W/A at 400 nm was obtained for a photodetector fabricated at 12.7 J/cm2.  相似文献   

18.
A series of chiral pyrrolidinium salts containing (1 S)-endo-(−)-born-2-yloxymethyl substituent in the structure of the cation and six different anions: chloride, tetrafluoroborate [BF4], hexafluorophosphate [PF6], trifluoromethanesulfonate [OTf], bis(trifluoromethylsulfonyl)imide [NTf2], bis(pentafluoroethylsulfonyl)imide [NPf2] and perfluorobutanesulfonate [C4FS] were efficiently prepared and extensively characterized. The enantiomeric purity of them was confirmed by NMR analysis with a chemical shift reagent. All salts were characterized with the specific rotation, the solubility in commonly used solvents, thermal properties, including phase transition temperatures and thermal stability. Salts with [PF6], [C4FS], [NTf2] and [NPf2] anions were classified as chiral ionic liquids (CILs). Moreover, salts with [NTf2] and [NPf2] anions were in the liquid state at room temperature and below. Therefore, density and dynamic viscosity, the surface tension and the contact angle on three different surfaces were also measured for them. Additionally, these chiral ionic liquids were tested as solvents in Diels-Alder reaction.  相似文献   

19.
Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2, the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2/CNT photocatalysts were characterized by PXRD, TEM and UV–Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV–Vis light. Introducing 0.1–0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2. The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol?1 from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed.  相似文献   

20.
Gold nanoparticles (Au‐NPs) were reproducibly obtained by thermal, photolytic, or microwave‐assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl4 in the presence of n‐butylimidazol dispersed in the ionic liquids (ILs) BMIm+BF4?, BMIm+OTf?, or BtMA+NTf2? (BMIm+=n‐butylmethylimidazolium, BtMA+=n‐butyltrimethylammonium, OTf?=?O3SCF3, NTf2?=?N(O2SCF3)2). The ultra small and uniform nanoparticles of about 1–2 nm diameter were produced in BMIm+BF4? and increased in size with the molecular volume of the ionic liquid anion used in BMIm+OTf? and BtMA+NTf2?. Under argon the Au‐NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au‐NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a Au???F interaction and anionic Aun stabilization in fluorine‐containing ILs. The 19F NMR signal in BMIm+BF4? shows a small Au‐NP concentration‐dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号