首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The forces between two molecularly smooth mica surfaces were measured over a range of concentrations in aqueous Li+, Na+, K+ and Cs+ chloride solutions. Deviations from DLVO forces in the form of additional short-range repulsive “Hydration” forces were observed only above some critical bulk concentration, which was different for each electrolyte. These observations are interpreted in terms of the corresponding ion exchange properties at the mica surface. “hydration” forces apparently arise when hydrated cations adsorbed on mica are prevented from desorbing as two interacting surfaces approach. dehydration of the cations leads to a repulsive hydration force. A simple site-binding model was successfully applied to describe the charging behavior of interacting mica surfaces . By subtraction of the DLVO-regulation theory from the total measured force the net hydration force was obtained for mica surfaces apparently fully covered with adsorbed cations. The magnitude of this extra force followed the series Na+ > Li+ > K+ > Cs+ and, in each case, could be described by a double-exponential decay.  相似文献   

2.
Rigorous thermodynamic analysis of hydration parameters has been fulfilled. Water solutions of potassium chloride were studied in a wide range of concentrations from 0 to 23 wt.% in the temperature range 283.15–308.15 K by ultrasonic and densimetry measurements using heat capacity data at constant pressure. The structural characteristics of hydrated complexes are analyzed: hydration number, volume of the stoichiometric mixture of K+ and Cl? ions without hydration shells, compressibility and molar volume of water in hydration spheres, and their concentration and temperature dependences. The mean pressure in the hydration spheres of KCl ions is shown to be about 350 atm at 298.15 K.  相似文献   

3.
Published data on structural characteristics of hydration of K+, Rb+, and Cs+ ions in aqueous solutions of their salts under standard conditions, including authors’ X-ray diffraction data, are summarized and correlated. The structural parameters of the nearest surrounding of the K+, Rb+, and Cs+ ions, such as the coordination numbers, interparticle distances, and types of ionic association, are discussed. It is noted that, because of weak tendency of these cations to hydration, the parameters of their coordination spheres strongly depend on the concentration and chemical nature of counterions.  相似文献   

4.
5.
Simulation of the hydration of Na+ and K+ cations in dilute solution was performed by the Monte Carlo method. A novel approach to structural analysis of hydration shells of ions was developed. Specific sets of coordination polyhedra formed by water molecules of the first coordination sphere were found. Structural and energy characteristics of hydration were calculated. The effect of Na+ and K+ cations on the structure of the network of H-bonds and mobility of water molecules in hydration shells was studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 852–857, May, 1999.  相似文献   

6.
A cluster of 200 water molecules containing a single ion (either Li+ or Na+ or K+ or F? or Cl?) has been studied at T = 298 K using Monte Carlo techniques. The waterwater interaction is obtained from a quantum-mechanical study of CI type; the ionwater potentials have been obtained from HartreeFock type computations. The computed coordination numbers in the first shell for Li+, Na+, K+, F? and Cl? are 4.0, 4.3, 5.1, 3.85 and 4.3, respectively; the corresponding first hydration shell radii are 2.28 Å, 2.59 Å, 3.27 Å, 1.99 Å and 2.85 Å, respectively. A discussion of the second and third hydration shell radii and coordination numbers is given.  相似文献   

7.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

8.
We have performed molecular dynamics simulations of a poly(oxyethylene) (POE) chain with 15 ethylene oxide units in an aqueous solution in the presence of potassium cations for 1 ns. The effect of the potassium ions on the POE aqueous solution characteristics are examined for the energetics, the hydration, the chain conformation and dynamics, and the solvent structure in comparison to those in the absence of cations. The POE's helical conformation is considerably distorted by complex formations with K+, and a significant perturbation of the POE hydration by K+ is observed. The competition between the K+–water and the K+–POE associations is found to be heavily shifted toward the latter. Furthermore, the POE–water pair interaction energy drastically decreases upon addition of K+. The observations, along with the decreased chain flexibility, point to the salting-out of POE salt aqueous solutions.  相似文献   

9.
The transference of water that results from ion migration through the nickel hydroxide precipitate membrane was studied in chloride, perchlorate, nitrate, and sulphate solutions to estimate the transference number of water and the co-ion transport. In the systems of univalent anions, the moles of water transported per mole of electrons in 0.1 N solutions is almost identical to the hydration number of each anion. This water flow decreases gradually as the concentration of external solution increases, because of increase in the co-ion (cation) transport with increasing concentration of the solution. In the system of sulphate solutions the co-ion transport is remarkable, the transport number of Na+ ions being 0.03 in 0.01 N, 0.27 in 0.10 N, and 0.50 in 0.5 N Na2SO4 solution. This large co-ion transport in Na2SO4 solution is attributed to the partical replacement of hydroxyl groups on the membrane by SO2?4 ions, which then acts as a negative fixed charge. The order of the selectivity for co-ion transport is K+ > Na+ > Li+ > Ni2+ ? Mg2+ in sulphate solutions and also in chloride solutions, although the transport number of the cations is much smaller in chloride solution than in sulphate solution.  相似文献   

10.
The gas‐phase hydration of Mg2+ complexes with deprotonated uracil ( U ), thymine ( T ), uridine ( U r , uracil riboside), and thymidine ( T dr , thymine deoxyriboside) was studied. The aim of the work was to analyze the hydration of product ions (eg, [2 U ‐H+Mg]+) formed as a result of the collision induced dissociation of the respective parent ion (eg, [3 U r ‐H+Mg]+). The efficiency of gas‐phase hydration of the ions [2 U ‐H+Mg]+ and [2 T ‐H+Mg]+ was similar. However, the efficiency of gas‐phase hydration of the ion [ U + U r ‐H+Mg]+ was much higher than that of gas‐phase hydration of the ion [ T + T dr ‐H+Mg]+. On the basis of the mass spectra obtained and the performed molecular modelling, it was concluded that in the ion [ T + T dr ‐H+Mg]+, we deal with a steric hindrance due to the presence of a sugar moiety, which affects water attachment. In the ion [ U + U r ‐H+Mg]+, the position of the sugar moiety does not affect water attachment.  相似文献   

11.
Property data for tetraalkylammonium cations, [H(CH2) n ]4N+, are reviewed. They pertain to the isolated cations and their transfer from the gas phase into aqueous solutions. Various properties of these cations in aqueous and non-aqueous solutions and data for their transfer between these are also reviewed. Emphasis is placed on the dependence of data on the length n of the alkyl chains rather than on the absolute values. Most of the data are available only for the first four members of the series. The properties of the isolated ions increase linearly with the chain length. Molar enthalpies of formation of the gaseous and aqueous cations, and absolute standard molar enthalpies of hydration, are derived. Standard molar entropies of dissolution of several salts in water are obtained from their solubilities and enthalpies of solution. The molar entropies of the crystalline iodides of the first four members of the series then give the standard partial molar entropies of the aqueous cations and their molar entropies of hydration. The standard partial molar volumes in aqueous and non-aqueous solutions are quite linear with n and in non-aqueous solutions the molar volume hardly depends on the nature of the solvent. On transfer from water to non-aqueous solvents the volume of Me4N+ suffers some shrinkage, that of Et4N+ appears to be unaffected, but from Pr4N+ onwards an increasing expansion takes place. This unexpected result is tentatively explained by hydrophobic intra-molecular association of pairs of alkyl chains in aqueous solutions, resulting in a tightening of the structure. The transfer of the R4N+ cations from water into non-aqueous solvents is governed by a large positive entropy change, outweighing the smaller positive enthalpy change. The transport properties of the aqueous R4N+ cations are non-linear with n. A major impediment to movement is thus the sticking of the water molecules to the ice-like hydrophobic hydration sheaths of the larger cations. The number of water molecules affected by the hydrophobic cations is open to widely differing estimates resulting from various approaches, and constitute an open issue.  相似文献   

12.
The Fourier transform infrared-attenuated total reflectance (FTIR-ATR) difference spectra of aqueous MgSO4, Na2SO4, NaCl and MgCl2 solutions against pure water were obtained at various concentrations. The difference spectra of the solutions showed distinct positive bands and negative bands in the O–H stretching region, indicating the influences of salts on structures of hydrogen-bonds between water molecules. Furthermore the difference spectra of MgCl2 solutions against NaCl solutions and those of MgSO4 solutions against Na2SO4 solutions with the same concentrations of anions (Cl? or SO 4 2? , respectively) allowed extracting the structural difference of the first hydration layer between Mg2+ and Na+. Using SO 4 2? as a reference ion, structural information of the first hydration layer of the Cl? anion was obtained according to the difference spectra of MgCl2 solutions against MgSO4 solutions and those of NaCl solutions against Na2SO4 solutions containing the same concentrations of cations (Mg2+ or Na+, respectively). The positive peak at ~3,407 cm?1 and negative peak at ~3,168 cm?1 in these spectra indicated that adding Cl? decreased the strongest hydrogen-bond component and increased the relatively weaker one.  相似文献   

13.
We study the partial volumes of amino acids in aqueous magnesium and sodium sulfate solutions, which have a different effect on the structure of water, and calculate the structural parameters of hydrated complexes of NH 3 + and COO? groups: hydration numbers and water volumes inside and outside the hydration shell. The hydration numbers are given as a sum of the contributions of the interactions in the ternary (water-salt-amino acid) and binary (water-salt) systems.  相似文献   

14.
Partial volumes $\bar V^0$ of amino acids in aqueous NH4Cl and NaCl solutions are discussed. The salts have different effects on water structure. The contributions of the charged NH 3 + and COO? groups of amino acids are found. Structural characteristics of hydrated complexes are calculated: partial volumes of water inside and outside the hydration sphere and hydration numbers. The same value of $\bar V^0$ (NH 3 + , COO?) is achieved at a higher NH4Cl concentration. The two salt systems with the same $\bar V^0$ (NH 3 + , COO?) have similar values of the partial volumes of water and hydration numbers.  相似文献   

15.
It was considered that the dissolution of cellulose in alkali solutions is mainly due to the breakage of hydrogen bonds. As an alkali hydroxide, KOH can provide OH? just like LiOH and NaOH; but it is well known that LiOH and NaOH can dissolve cellulose, whereas KOH can only swell cellulose. The inability of KOH to dissolve cellulose was investigated and the mechanism of cellulose dissolving in alkali solutions was proposed. The dissolution behavior of cellulose and cellobiose in LiOH, NaOH and KOH were studied by means of 1H and 13C NMR as well as longitudinal relaxation times. The structure and properties of the three alkali solutions were compared. The results show that alkali share the same interaction mode with cellobiose and with the magnitude of LiOH > NaOH > KOH; the alkalis influence the structure of water also in the same order LiOH > NaOH > KOH. The different behavior of the three alkalis lies in the different structure of the cation hydration ions. Li+ and Na+ can form two hydration shells, while K+ can only form loose first hydration shell. The key to the alkali solution can or cannot dissolve cellulose is whether the cation hydration ions can form stable complex with cellulose or not. K+ cannot form stable complex with cellulose result in the KOH solution can only swell cellulose.  相似文献   

16.
Water self-diffusion and ion mobilities in various ionic forms (H+, Li+, Na+, Rb+, Cs+, and Ba2+) of perfluorinated sulfocationic membranes MF-4SK were studied by NMR and impedance spectroscopy. When degrees of hydration are low, the self-diffusion coefficients of water and ionic conductivities are considerably affected by the water content of the membrane. The self-diffusion coefficients decrease in the order H+ > Ba2+ > Cs+ > Rb+ > Na+ > Li+, whereas the ion mobility decreases in the order H+ > Li+ > Na+ > Cs+ > Ba2+.  相似文献   

17.
The hydration, state, and mobility of protons and Li+, Na+, and Cs+ ions in MF-4SK perfluorinated sulfonic acid cation-exchange membranes doped with silicon dioxide and phosphotungstic acid have been investigated by NMR and impedance spectroscopy. The dopants increase the moisture content of the membrane and change the system of pores and channels in which ion transport takes place. At low humidities, the dopant particles are involved in ion transport. The greatest effect is observed for the membranes doped with both SiO2 and phosphotungstic acid. The water molecules sorbed by dopant particles as a material participate in the hydration of alkali metal cations in the membrane.  相似文献   

18.
A cluster of 200 molecules of water containing one of the LiF, LiCl, NaF, NaCl, KF or KCl ion pairs has been studied at the temperature T= 298°K using Monte Carlo techniques. The anion-cation internuclear separations considered in this work for any of the above pairs are 6.0 Å, 8.0 Å and 10.0 Å. The water-water potential is obtained from quantum-mechanical Hartree-Fock type computations corrected by inclusion of dispersion forces; the ion-water potentials have been obtained from Hartree-Fock type computations on the single ion-water complex. The computed radii for the first hydration shell are 2.7±0.1 Å, 3.4±0.3 Å, 4.0±0.3 Å, 3.0±0.5 Å, and 3.9±0.4 Å, for Li+, Na+, K+, F and Cl, respectively. The computed coordination numbers are 5.4±0.7,6.0±1.1, 7.2±1.2,4.5±0.6 and 5.1±0.8 for the same ions, respectively. The range of the coordination number obtained from compressibility, enthalpy, NMR spectroscopy and other experimental methods is much larger than the error ranges above given. Therefore the Monte Carlo simulation provides reliable information on the cluster shape, cluster structure and on the coordination numbers and hydration shell radii for the cations and anions, when both are present in a water cluster.  相似文献   

19.
An infinitely diluted aqueous solution of Rb+ was studied using ab initio-based model potentials in classical Monte Carlo simulations to describe its structural and thermodynamic features. An existing flexible and polarizable model [Saint-Martin et al. in J Chem Phys 113(24) 10899, 2000] was used for water–water interactions, and the parameters of the Rb+–water potential were fitted to reproduce the polarizability of the cation and a sample of ab initio pair interaction energies. It was necessary to calibrate the basis set to be employed as a reference, which resulted in a new determination of the complete basis set (CBS) limit energy of the optimal Rb+–OH2 configuration. Good agreement was found for the values produced by the model with ab initio calculations of three- and four-body nonadditive contributions to the energy, as well as with ab initio and experimental data for the energies, the enthalpies and the geometric parameters of Rb+(H2O) n clusters, with n = 1,  2,…, 8. Thus validated, the potential was used for simulations of the aqueous solution with three versions of the MCDHO water model; this allowed to assess the relative importance of including flexibility and polarizability in the molecular model. In agreement with experimental data, the Rb+–O radial distribution function (RDF) showed three maxima, and hence three hydration shells. The average coordination number was found to be 6.9, with a broad distribution from 4 to 12. The dipole moment of the water molecules in the first hydration shell was tilted to 55° with respect to the ion’s electric field and had a lower value than the average in bulk water; this latter value was recovered at the second shell. The use of the nonpolarizable version of the MCDHO water model resulted in an enhanced alignment to the ion’s electric field, not only in the first, but also in the second hydration shell. The hydration enthalpy was determined from the numerical simulation, taking into account corrections to the interfacial potential and to the spurious effects due to the periodicity imposed by the Ewald sums; the resulting value lied within the range of the various different experimental data. An analysis of the interaction energies between the ion and the water molecules in the different hydration shells and the bulk showed the same partition of the hydration enthalpy as for K+. The reason for this similarity is that at distances longer than 3 Å, the ion–water interaction is dominated by the charge-(enhanced) dipole term. Thus, it was concluded that starting at K+, the hydration properties of the heavier alkali metal cations should be very similar.  相似文献   

20.
 Solubility isotherms in the CuBr2MBr−H2O (M + = Li+, Na+, Cs+) systems at 298.15 K were measured. The results together with other available literature data for copper chloride and bromide systems were treated by hydration analysis, and comparative discussion of ionic processes taking place in the respective saturated solutions was performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号