首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acid dissociation constants of form pK1 = 7.34 ± 0.01, pK2 = 7.84 ± 0.01, pK3 = 8.77 ± 0.01, pK4 = 9.49 ± 0.01, and pK5 = 10.70 ± 0.02 of cationic amikacin are determined by pH-metric titration at 25°C against the background of 0.1 mol/L KNO3. K1, K2, K3, and K4 correspond to the dissociation of protons coordinated to amino groups, while K5 characterizes the dissociation of the hydroxyl hydrogen atom, testifying to the amphoteric character of amikacin molecules. Applying density functional theory (DFT) with the B3LYP hybrid functional and the 6-311G**++ basis set, the partial charges on the atoms of an amikacin molecule are calculated. It is concluded that the dissociation of H(55)hydrogen atom occurs with a greatest partial charge of +0.53631.  相似文献   

2.
Dissociation constants of 5-methoxy-6-methyluracil, 5-methoxy-1,6-dimethyluracil and 5-methoxy-3,6-dimethyluracil in water are determined. Basing on the obtained рKа1 values, the content of anions in aqueous alkaline solution of 5-methoxy-6-methyluracil was calculated. The results were confirmed by the use of model compounds: 5-methoxy-1,6-dimethyluracil and 5-methoxy-3,6-dimethyluracil using the NMR spectroscopy.  相似文献   

3.
Perovskite-like phases AMn3V4O12 (A = Ca, Ce, and Sm) were prepared under borothermic conditions (p = 7.0–9.0 GPa, T = 700–1100°C). Their X-ray diffraction structure (space group Im \(\bar 3\), Z = 2) was determined, and unit cell parameters were calculated: for CaMn3V4O12: а = 7.40824(3) Å, for SmMn3V4O12: а = 7.45280(8) Å, and for CeMn3V4O12: а = 7.46965(4) Å. The temperature-dependent electrical resistivity (10–300 K) and magnetic susceptibility (2–300 K) of the prepared phases were studied.  相似文献   

4.
The substitution equilibria AuCl 2 ? + iNH 4 + = Au(NH3)iCl2 ? i + iCl? + iH+, β i * . were studied pH-metrically at 25°C and I = 1 mol/L (NaCl) in aqueous solution. It was found that logβ 1 * = ?5.10±0.15 and logβ 2 * = ?10.25±0.10. For equilibrium AuNH3Clsolid = AuNH3Cl, log K s = ?3.1±0.3. Taking into account the protonation constants of ammonia (log K H = 9.40), the obtained results show that for equilibria AuCl 2 ? + iNH3 = Au(NH3)iCl2 ? i + iCl?, logβ1 = 4.3±0.2, and logβ2 = 8.55±0.15. The standard potentials E 0 1/0 of AuNH3Cl0 and Au(NH3) 2 + species are equal to 0.90±0.02 and 0.64±0.01 V, respectively.  相似文献   

5.
The stepwise complexation of rhenium(V) with N-ethylthiourea has been studied by the potentiometric method in 6 mol/L HCI at 298 K. It has been found that rhenium(V) forms five complex species with this ligand of the following compositions: [ReOLCl4]?, [ReOL2Cl3], [ReOL3Cl2]+, [ReOL4Cl]2+, and [ReOL5]3+. The calculated logarithms of stepwise formation constants of the complexes are the following: logK1 = 4.10 ± 0.05, logK2 = 3.16 ± 0.02, logK3 = 2.61 ± 0.02, logK4 = 2.26 ± 0.02, and logK5 = 1.80 ± 0.02. It has been shown that the introduction of the ethyl radical into the thiourea molecule leads to an increase in the stability of rhenium(V) complexes.  相似文献   

6.
Dimethylgold(III) complexes with 8-hydroxyquinoline Me2Au(Ox) (I) and 8-mercaptoquinoline Me2Au(Tox) (II) were synthesized and studied. Complex II obtained for the first time was identified from the elemental analysis, IR, 1H NMR, and mass spectrometry data. The thermal properties of complexes I, II in condensed state were investigated by thermography. The temperature dependences of the saturated vapor pressure over crystals were measured by the Knudsen effusion method with mass spectrometric recording of the gas phase composition and the thermodynamic characteristics of the sublimation process were determined: for I, log P[Torr] = (14.6 ± 0.3) ? (6.34 ± 0.10) × 103/(T, K), Δ H subl o = 121.2 ± 1.9 kJ?1, Δ S subl o = 224.1 ± 4.6 J mol?1 K?1 (the temperature interval under study 80–115°C); for II, log P [Torr] = (13.3 ± 0.2) ? (6.30 ± 0.09) × 103/(T, K), Δ H subl o = 120.5 ± 1.7 kJmol?1, ΔS subl o = 199.3 ± 3.0 J mol?1 K?1 (86–145°C).  相似文献   

7.
The low-temperature heat capacity of K2MoO4 was measured by adiabatic calorimetry. The smoothed heat capacity values, entropies, reduced Gibbs energies, and enthalpies were calculated over the temperature range 0–330 K. The standard thermodynamic functions determined at 298.15 K were C p ° (298.15 K) = 143.1 ± 0.2 J/(mol K), S°(298.15 K) = 199.3 ± 0.4 J/(mol K), H°(298.15 K)-H°(0) = 28.41 ± 0.03 kJ/mol, and Φ°(298.15 K) = 104.0 ± 0.4 J/(mol K). The thermal behavior of potassium molybdate at elevated temperatures was studied by differential scanning calorimetry. The parameters of polymorphic transitions and fusion of potassium molybdate were determined.  相似文献   

8.
The mesomorphic properties of cholesteric ester of p-nitrobenzoic acid С34Н49NO4 were studied by differential scanning calorimetry and polarizing thermomicroscopy. Its thermal stability was determined using TGA data. The molecular and crystal structures were characterized by single-crystal X-ray diffraction. Crystals were monoclinic, а = 10.7023(4) Å, b = 10.0995(4) Å, с = 14.1563(6) Å, β = 101.499(1)°, space group Р21, Z = 2. An extensive molecule contained three different structural moieties: p-nitrobenzoic acid moiety, a cholesteric core consisting of four conjugated rings of different conformation, and a hydrocarbon chain of six carbon atoms. A molecule was chiral and “left” with a torsion angle of 2.6°.  相似文献   

9.
Modelling of proton and metal exchange in the alginate biopolymer   总被引:1,自引:0,他引:1  
Acid–base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1≤I/mol l?1≤1.0) and in different supporting electrolytes (Et4NI, NaCl, KCl, LiCl, NaCl+MgCl2), with the aim of examining the influence of ionic medium on the proton-binding capacity and of quantifying the strength of interaction with light metal ions in the perspective of speciation studies in natural aqueous systems. Potentiometric ([H+]-glass electrode) and titration calorimetric data were expressed as a function of the dissociation degree (α) using different models (Henderson–Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at α=0.5, are log K H=3.686±0.005, ΔG 0=?21.04±0.03 kJ mol?1, ΔH 0=4.8±0.2 kJ mol?1 and TΔS 0=35.7±0.3 kJ mol?1, at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between ΔG and TΔS was found, TΔS=?9.5–1.73 ΔG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.  相似文献   

10.
Aqueous solutions of the graft copolymer with a polyimide backbone and poly(N,N-dimethylamino-2-ethyl methacrylate) side chains with a molecular mass of M = 4.7 × 105 and a grafting density of side chains of 0.44 are investigated by light scattering and turbidimetry. Solutions are studied in a wide concentration range of 0.0008–0.0250 g/cm3 at рН values varying from 2 to 12 for each concentration. The temperature dependences of optical transmission, scattered light intensity, and hydrodynamic radii of scattering objects are obtained. It is shown that the copolymer is thermosensitive only at pH > 8.0. A decrease in acidity of the medium at a fixed concentration of the copolymer is accompanied by a decline in temperatures corresponding to the onset and end of phase separation Т 1 and Т 2, leading to the narrowing of this interval. At constant рН values, temperatures Т 1 and Т 2 rise with solution dilution, while the phase transition interval becomes wider.  相似文献   

11.
Ion mobility spectrometry (IMS) is widely used to detect and identify chemical warfare agents, narcotics, and explosives in the field based on their reduced mobility (K 0 ) values. Current detection windows for these analytes can only be as narrow as ±2% of the K 0 values for the analyte being sought. These wide detection windows cause false positive alarms when an interferent with a similar reduced mobility falls within the detection window and triggers an alarm. This results in the loss of time and money as resources are diverted to verify the alarm. A high rate of false positive alarms is caused by a discrepancy in the reported K 0 values across the literature that is, at best, ± 2% of the average available values. By accurately and precisely measuring the variables affecting an ion’s K 0 value, an accurate K 0 value can be produced and the detection windows widths that are established using these reference values can be reduced. Components for accurate analyses have been assembled in the past and here the construction of an accurate ion mobility spectrometry drift tube is described that is accurate to 0.1% of the calculated K 0 value and can be hermetically sealed without inserting the drift tube into a large vacuum chamber. Having a pressure sealed accurate ion mobility spectrometer will allow for the control of the pressure variable within the K 0 equation and the safe analysis of hazardous chemicals. Here the construction of an inexpensive and easily reparable sealed drift tube is described.  相似文献   

12.
A sample of magnesio-ferri-hornblendite, a potential new mineral of the amphibole supergroup, was studied by X-ray diffraction and IR spectroscopy. The crystal chemical formula is (Z = 2): AK0.04M(4) (Ca1.92Na0.08) C[M(1)(Mg1.78Fe0.224+) M(2)(Mg1.62Fe0.263+Al0.12) M(3)(Mg0.64Fe0.322+Mn0.04)] [T(Si7.44Al0.56)O22] W(OH)2. The monoclinic unit cell parameters are a = 9.855(1) Å, b = 18.084(1) Å, c = 5.289(1) Å, β = 104.853(2)°; V = 911.1(2) Å3; space group C2/m; Z = 2. The crystal structure was refined to R = 2.82% in the anisotropic approximation for atomic displacement parameters using 1166 reflections with I > 2σ(I). The magnesio-ferri-hornblendite structure is generally similar to the structures of other monoclinic calcium amphiboles, and its key distinctive features are the predominance of Мg among C2+ cations and Fe3+ among C3+ cations.  相似文献   

13.
The stepwise substitution equilibrium AuCl 2 ? +iX?=AuCl2?i X i ? +iCl?, βi, where X? is the glycinate ion (H2N-CH2-COO?), i = 1 or 2, at 25°C in an aqueous solution with I = 1.0 mol/L (NaCl) has been studied pH-metrically. The corresponding constants are logβ1 = 3.60 ± 0.10, and logβ2 = 6.2 ± 0.2.  相似文献   

14.
Laser electrospray mass spectrometry (LEMS) measurement of the dissociation constant (Kd) for hen egg white lysozyme (HEWL) and N,N′,N″-triacetylchitotriose (NAG3) revealed an apparent Kd value of 313.2?±?25.9 μM for the ligand titration method. Similar measurements for N,N′,N″,N″’-tetraacetylchitotetraose (NAG4) revealed an apparent Kd of 249.3?±?13.6 μM. An electrospray ionization mass spectrometry (ESI-MS) experiment determined a Kd value of 9.8?±?0.6 μM. In a second LEMS approach, a calibrated measurement was used to determine a Kd value of 6.8?±?1.5 μM for NAG3. The capture efficiency of LEMS was measured to be 3.6?±?1.8% and is defined as the fraction of LEMS sample detected after merging with the ESI plume. When the dilution is factored into the ligand titration measurement, the adjusted Kd value was 11.3 μM for NAG3 and 9.0 μM for NAG4. The calibration method for measuring Kd developed in this study can be applied to solutions containing unknown analyte concentrations.
Graphical Abstract
  相似文献   

15.
The KPb2Cl5 and KPb2Br5 crystals are monoclinic (P21/c) with a microtwinned structure. X-ray analysis of chloride resulted in the parameters a = 8.854(2) Å, b = 7.927(2) Å, c = 12.485(3) Å; β = 90.05(3)°, dcalc = 4.78(1) g/cm3 (STOE STADI4, MoKα, 2θmax = 80°), R1 = 0.0702 for 4094 F ≥ 4 σ(F) reflections. For bromide, a = 9.256(2) Å, b = 8.365(2) Å, c = 13.025(3) Å; β = 90.00(3)°, dcalc = 5.62(1) g/cm3 (Bruker P4, MoKα, 2θmax = 70°), R1 = 0.0692 for 3076 F ≥ 4 (F) reflections.  相似文献   

16.
Solid solutions Bi3Nb1–yWyO7 ± δ, Bi3Nb1–yVyO7 ± δ, Bi3Nb1–yFeyO7 ± δ (y = 0.1–0.5; Δy = 0.1), and Bi3–xYxNb1–yWyO7 ± δ (x = 0.05, 0.1; y = 0–0.3; Δy = 0.1) have been studied. The homogeneity ranges of the solid solutions and crystal-chemical parameters have been determined by means of X-ray powder diffraction. The electrical conductivity of sintered samples has been studied by impedance spectroscopy. The joint introduction of yttrium and tungsten into the niobium sublattice does not lead to an increase in the conductivity of solid solutions, and the change of the dopant type has no noticeable effect on this conductivity.  相似文献   

17.
Ytterbium alkali-metal chromites YbMCr2O5 (M = Li, Na, K, Cs) were synthesized by a ceramic procedure from the corresponding oxides and carbonates. Their crystal systems and unit cell parameters were determined by the homology method: for YbLiCr2O5, a = 10.34 Å, b = 10.62 Å, c = 15.05 Å, Z = 16, V o = 1653.74 Å3, ρX-ray = 5.85 g/cm3, ρpycn = 5.81 ± 0.03 g/cm3; for YbNaCr2O5, a = 10.30 Å, b = 10.56 Å, c = 16.46 Å, Z = 16, V o = 1790.32 Å3, ρX-ray = 5.64 g/cm3, ρpycn = 5.59 ± 0.07 g/cm3; for YbKCr2O5, a = 10.33 Å, b = 10.63 Å, c = 19.93 Å, Z = 16, V o = 2188.47 Å3, ρX-ray = 5.95 g/cm3, ρpycn = 5.91 ± 0.03 g/cm3; and for YbCsCr2O5, a = 10.34 Å, b = 10.63 Å, c = 18.43 Å, Z = 16, V o = 2025.72 Å3, ρX-ray = 5.19 g/cm3, ρpycn = 5.16 ± 0.05 g/cm3.  相似文献   

18.
An approach using method validation (MV) parameters, otherwise known as analytical figures of merit was combined with electrospray ionization high performance ion mobility spectrometry (ESI-HPIMS) to describe an approach for evaluating drugs and explosives analysis in the field. MV parameters such as reduced mobility (K o ), conditional reduced mobility (K c ), resolving power (R p ), theoretical plates (N), linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), repeatability, range, and reporting limit were investigated and developed for eleven drugs and six explosives. Our investigation estimated resolving power at 66 ± 0.64 for the ESI-HPIMS used. The LOD’s calculated ranged from 0.45–2.97 ng of material electrosprayed into the ESI-HPIMS. The LOQ’s calculated falls in the range 4.11–8.63 ng of material electrosprayed into the ESI-HPIMS. The key findings from this investigation were the following: K c proves to be a measure of the identity of an explosive or drug ion; a parameter that may be applied to help aid IMS devices when detecting drugs and explosives. MV parameters, especially, K c , introduced in this study is an effective parameter for establishing a unique identity of a drug or explosive. A control chart is an effective way to monitor the performance of an instrument and may be a useful tool for establishing reliability of confirmatory data in forensic investigations. MV parameters may be a reliable, accurate and unique identification marker for target drugs and explosives capable of differentiating these substances from false positive responses.  相似文献   

19.
The [Co2(tbb)Cl4]?4DMF complex, where tbb is meso-1,2,3,4-tetra(1H-benzo[d]imidazol-2-yl)butane, is synthesized and characterized by single crystal X-ray diffraction. For the complex: C44H54Co2Cl4N12O4, Mr = 1074.65, monoclinic crystal system, space group P21/n, a = 9.2350(13) Å, b = 11.3566(15) Å, c = 23.879(3) Å, β = 90.547(2)°, V = 2504.3(6) Å3, Z = 2, Dc = 1.425 g/cm3, λ = 0.71073 Å, μ(MoKα) = = 0.929 mm–1, F(000) = 1112, S = 1.047, R = 0.0765, and wR = 0.2110 for 13668 observed reflections with I > 2σ(I). It is a neutral dinuclear complex. One meso-1,2,3,4-tetra(1H-benzo[d]imidazol-2-yl)butane coordinates two cobalt(II) ions. Each cobalt(II) ion is formed by two tbb nitrogen atoms and two chloride ions. The antiproliferative activities of the complex are screened by MTT assay against Eca109 cancer cells. The complex exhibits inhibition on the growth of Eca109 cancer cells with IC50 of 22.1±6.7 μM after 48 h treatment. The cobalt complex has potential application in treatment of Eca109 cancer. CCDC 1015791.  相似文献   

20.
A Sm–Sm2Se3 phase diagram has been studied from 1000 K until melting. This system forms three congruently melting compounds: SmSe (ST NaCl, a = 0.6200 nm, Tm = (2400 ± 50) K, and H = 2750 MPa), Sm3Se4 (ST Th3P4, a = 0.8925 nm, Tm = (2250 ± 30) K, and H = 3350 MPa), and Sm2Se3 (ST Th3P4, a = 0.8815 nm, Tm = (2150 ± 40) K, and H = 5300 MPa). There are eutectics between Sm and SmSe phases and between SmSe and Sm3Se4 phases at 2.5 at % Se, 1300 K and at 54.5 at % Se, 2100 K, respectively. Within the extent of Sm2+ Sm23+ Se4–Sm23+Se3 solid solution (ST Th3P4), the experimentally determined percentages of Sm2+ ions correspond with the values calculated from the formula compositions of samples. The bandgap width for SmSe1.45 and SmSe1.48 phases is ΔE = (1.90 ± 0.05) eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号