首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plasma-assisted synthesis of TiO2/SnO2 nanocomposite is described. In this approach, a precursor containing a mixture of [TiCl3 and SnCl2] exposed to electric discharge was oxidized by plasma-generated reactive species (HO·/H2O = 2.85 eV/SHE). SnO2 microstructures with a diameter of 10–40 µm were coated by thin layers TiO2 nanorods with mean diameter of 6–8 nm. The obtained TiO2/SnO2 nanocomposite was characterized by transmission and scanning electron microscopy, X-ray diffraction and Fourier transform infrared. TiO2/SnO2 nanocomposite was found to be a promising new material for the photocatalytic discoloration of aqueous Remazol Brilliant Blue-R dye under daylight and UVA light sources, due to the combined effects of large specific surface area and heterojunction which efficiently separates the electron–hole pairs delaying the charge recombination. The leaching test indicated that the nanocomposite is stable easily reusable.  相似文献   

2.
The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)?1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2?×?10?15 to 6.5?×?10?15 cm2 s?1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.  相似文献   

3.
TiO2 thin films have been effectively fused onto F:SnO2 (FTO) substrates via the electrodeposition method. The influence of deposition temperature on the synthesis of F:SnO2 substrates and relative information of as-deposited and annealed TiO2 thin films have been studied. Novel TiO2 microspheres are detected on F:SnO2 substrates at an optimized electrodeposition potential. Raman bands approve the creation of single-anatase-phase TiO2. The optimized deposition surroundings show a decrease in the band gap of F:SnO2 substrates and TiO2 thin films. The determined photoelectrochemical properties of annealed TiO2 thin films indicate a fill factor of 51% and power conversion efficiency of 0.15% for application in solar cells.  相似文献   

4.
In this work, tin(II) oxalate was studied as a novel chloride-free starting material for the preparation of a stable Sn-containing precursor solution. This precursor was applied for the chemical solution deposition (CSD) of transparent conducting coatings of SnO2 on Si/SiO2 substrates. An influence of synthesis parameters, such as pH, complexing agent to metal ion ratio on the stability of the citrato peroxo Sn(IV) precursor has been investigated in this study. Insights into the precursor chemistry and its thermal decomposition based on TG-DSC analysis are also presented. The obtained SnO2 films were characterized by high temperature X-ray diffraction (HT-XRD) and scanning electron microscopy (SEM) to evaluate phase purity and film thickness, respectively.  相似文献   

5.
Two series of TiO2 thin films were prepared based on soluble precursor powders: The first run originated directly from an alcohol-based coating solution whereas for the second batch the aqueous precursor powder sol had previously undergone a hydrothermal treatment. The respective microstructures were characterized by electron microscopy, the phase evolution was monitored by X-ray diffraction. Ellipsometric porosimetry (EP) was employed to reveal changes of porosity and pore size induced by thermal treatment of the films.
Soluble TiO2 precursor powders were hydrothermally treated to yield coating solutions. Films from these sols were compared with those directly obtained by dissolving the precursor powders. Results indicate that crystallization to anatase is induced under hydrothermal conditions and the resulting films mostly maintain their porosity throughout thermal treatment. In contrast to that coatings processed from as-dissolved precursor powders undergo more extensive densification
  相似文献   

6.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   

7.
A new single‐source precursor, [SnCl4{OC(H)OC2H5}2], prepared by treating tin tetrachloride with ethyl formate (1:2 ratio) was developed for the deposition of tin oxide thin films on glass substrates. The compound [SnCl4{OC(H)OC2H5}2] is highly volatile and provides very high growth rates (up to 100Å s?1 at 560 °C) in an atmospheric pressure chemical vapor deposition (APCVD) reactor. More significantly, the compound does not decompose to tin oxide below 320 °C, thereby minimizing the formation of particles in the vapor above the growing tin oxide film. To prepare highly conducting fluorine doped tin oxide (SnO2:F) films 2,2,2‐trifluoroethyl trifluoroacetate was used as the source of fluoride. High quality SnO2:F films were deposited at 560 °C with a flow rate of 2 mL fluoride reagent hr?1; typical film properties are resistivity of 5.9 X 10?4 Ω cm, Hall mobility of 27.3 cm2 V?1 s?1, carrier concentration of 3.9 X 1020 cm?3 and percent transmission ranging from 86 to 88 %. The best films of SnO2:F possess transparencies as high as 90 % (750 nm), sheet resistances as low as 7 Ω sq?1 and Haacke's figure of merit as high as 29 X 10?3 (750 nm). The newly developed APCVD reactor and the chemistry were optimized with respect to structural, electrical and optical properties of the films by adjusting the substrate temperature, gas flow rates and the amount of fluoride present in the vapor stream. Growth rates with respect to deposition time, substrate temperature and flow rates of precursors were found to be similar for both undoped (SnO2) and doped (SnO2:F) samples. The SnO2:F films possess larger grains than the SnO2 which may account for the lower resistivity and the higher mobility in the SnO2:F samples.  相似文献   

8.
The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10?5 to 6.97×10?4 mol L?1 with quantification and detection limits of 3.80×10?5 mol L?1 (14.07 mg L?1) and 1.13×10?5 mol L?1 (4.18 mg L?1), respectively.  相似文献   

9.
The surface of ceramic electrolyte ZrO2 + 9 mol % Y2O3, hereinafter referred to as YSZ (abbreviated yttria stabilized zirconia), was modified with 0.1 to 0.2 μm oxide films of ZrO2, Y2O3, and YSZ (same composition as substrate) by dip coating in alcohol solutions of the relevant salts and further annealing. The results of scanning electronic microscopy and X-ray diffraction evidence epitaxial film growth. By means of impedance spectroscopy at the temperatures of 500 to 600°C, the effect of YZS electrolyte surface modification with ZrO2, Y2O3, and YSZ films to the polarization resistance of silver electrode was studied.  相似文献   

10.
Dip coated vacuum annealed zinc tin oxide thin films on soda lime silica glass have been deposited from the precursor sols containing zinc acetate dihydrate and tin (IV) chloride pentahydrate (Zn:Sn = 67:33, atomic ratio in percentage) in 2-methoxy ethanol by varying sol pH (0.85–5.5). Crystallinity, morphology, optical and photocatalytic properties of the films strongly depend on sol pH. Measurement of grazing incidence X-ray diffraction confirms the presence of hexagonal nano ZnO in the films derived from the sols of pH < 5.5. Film crystallinity deteriorates on increasing sol pH and the film deposited from the sol of pH 5.5 shows XRD amorphous but the selected area diffraction pattern and HRTEM image evidence the presence of nano Zn2SnO4 (size, 5–6 nm). Direct band gap energy of films increases on increasing sol pH. To visualize the film surface microstructure, FESEM study has been done and a rod-like surface feature is revealed in the film deposited from the sol of pH 2.85. A dependence of precursor sol pH on the photocatalytic activity of films towards degradation of Rhodamine 6G dye under UV (254 nm) irradiation is found and the highest decomposition rate constant, ‘k’ value is obtained from the film prepared from the sol of pH 5.5. The presence of zinc deficient nano Zn2SnO4 in the film may consider for generating the highest ‘k’ value. We also measure gelling time, viscosity of sols as well as UV and FTIR studies on the films and propose chemical reactions.  相似文献   

11.
Thin films of pure SnO2, of the Sn/Li2O layered structure, and of Sn/Li2O were fabricated by sputtering method, while a `lithium-reacted tin oxide thin film' was assembled by the evaporation of lithium metal onto a SnO2 thin film. Film structure and charge/discharge characteristics were compared. The lithium-reacted tin oxide thin film, the Sn/Li2O layered structure, and the Sn/Li2O co-sputtered thin films did not show any irreversible side reactions of forming Li2O and metallic Sn near 0.8 V vs Li/Li+. The initial charge retention of the Sn/Li2O layered structure and Sn/Li2O co-sputtered thin films was about 50% and a similar value was found for the lithium-reacted tin oxide thin film (more than 60%). Sn/Li2O layered structure and Sn/Li2O co-sputtered thin films showed better cycling behavior over 500 cycles than the pure SnO2 and lithium-reacted tin oxide thin film in the cut-off range from 1.2 to 0 V vs Li/Li+.  相似文献   

12.
The sensor properties of nanostructured films of SnO2, In2O3, and their combinations for detecting CO in air in the temperature range of 330–520°C were investigated. It was found that SnO2 films show the least sensitivity to CO. Sensitivity grows as the concentration of In2O3 in SnO2 increases, and it reaches its maximum value in pure In2O3. At the same time, the maximum of sensitivity to CO in air shifts towards low temperatures. Sensor response time was found to be about 1 s for the studied SnO2 and In2O3 films, and about 0.5 s for the composite film. The mechanism of sensor sensitivity for the studied metal oxide films in detecting CO in air is discussed.  相似文献   

13.
The conductivity of films consisting of a mixture of SnO2 and In2O3 nanocrystals at 200–500°C was studied. Based on the experimental data, it was assumed that in films containing less than 20 wt % In2O3, the current flows along SnO2 nanocrystals. A model of conductivity in these films is presented; it includes an electron transfer from In2O3 to SnO2, which forms positively charged In2O3 nanocrystals that contact the negatively charged SnO2 nanocrystals. In the presence of In2O3 nanocrystals, the activation energy of the electron transfer between SnO2 nanocrystals decreased substantially because of a decrease in the barrier of electron transfer between SnO2 crystals under the action of the negative charge. As a result, a percolation cluster of charged SnO2 crystals formed. At high contents of In2O3 (over 20 wt %), the conductivity increased dramatically. The curve of the temperature dependence of conductivity changed because of the appearance of a percolation cluster of In2O3 nanocrystals, in which the current passed. The conductivity of a mixed film of this kind differed from that of the nanocrystalline film of pure In2O3.  相似文献   

14.
A series of tin‐doped hydroxypropyl cellulose (HPC) lyotropic liquid crystal (LC) was synthesized using a simple process and their properties were characterized using selective reflection, wide‐angle X‐ray diffraction (WAXD), and the band texture observed under polarized optical microscope. The present preparation is applicable for mass production using large substrate with low cost HPC. A cholesteric lyotropic LC phase was observed for the hybrid solution with higher than 40 wt % HPC. After sol–gel condensation, the HPC‐Sn hybrid LC films were calcined at 400 °C and the as‐prepared product was determined to obtain tin dioxide (SnO2) which was characterized using WAXD. The iridescent color and ~2 nm structure seen after the condensation disappeared in the as‐prepared SnO2. Scanning electronic microscope images of the SnO2 showed that the HPC content in the HPC‐Sn hybrid played an important role in controlling the SnO2 morphology. A spectrum of relatively monochromatic extreme ultraviolet (13.5 nm) emission was measured in the as‐prepared SnO2 in comparison with bulk tin and inverse opal SnO2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4566–4576, 2009  相似文献   

15.
SnO2 thin films synthesized by sol-gel are irradiated with reactor neutrons up to fast neutron fluence of 9.6 × 1017 neutrons cm–2 at 40°C. The influence of defects generated by neutrons irradiation, through the properties modification, on the photo-catalytic activity of SnO2 films is investigated. It is found that the photoactivity of the irradiated films is enhanced after reactor neutrons irradiation. An improvement of 41% is observed for the sample irradiated at a neutron fluence of 9.6 × 1017 neutrons cm–2. This is attributed to several parameters modified by the reactor neutron irradiation principally the crystallite size and space charge region which are closely related to the photocatalytic performance.  相似文献   

16.
MoS2 thin films with marigold flower-like nanostructures were grown on conductive fluorine-doped tin oxide (FTO) substrates through a one-step hydrothermal synthesis for their application as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Different MoS2 thin film samples (A–D) were grown on FTO slides using different concentrations of precursors (sodium molybdate and thioacetamide), while keeping the Mo/S molar ratio constant (1:4.6), in all samples. The effect of varying precursor concentrations (3.2–12.6 mM on MoS2 basis) on the structure of the nanostructured thin films and their performance as DSSC-CEs was investigated. Scanning electron microscopy revealed a material with an infolded petal-like morphology. With increasing precursor concentration, the petal-like structures tended to form bunched nanostructures (100–300 nm) resembling marigold flowers. X-ray diffraction analysis, X-ray photoelectron, and Raman spectroscopy studies showed that the thin films were composed of hexagonal MoS2 with good crystallinity. Hall effect measurements revealed MoS2 to be a p-type semiconductor with a carrier mobility of 219.80 cm2 V?1 s?1 at room temperature. The electrochemical properties of the thin films were examined using cyclic voltammetry and electrochemical impedance spectroscopy. The marigold flower-like MoS2 thin films showed excellent electrocatalytic activity towards the I¯/I3¯ reaction and low charge transfer resistance (Rct) values of 14.77 Ω cm?1, which was close to that of Pt electrode (12.30 Ω cm?1). The maximum power conversion efficiency obtained with MoS2 CE-based DSSCs was 6.32%, which was comparable to a Pt CE-based DSSC (6.38%) under one sun illumination. Similarly, the maximum incident photon-to-charge carrier efficiency exhibited by MoS2 CE-based DSSCs was 65.84%, which was also comparable to a Pt CE-based DSSC (68.38%). The study demonstrated that the marigold flower-like nanostructured MoS2 films are a promising alternative to the conventional Pt-based CEs in DSSCs.
Graphical abstract ?
  相似文献   

17.
Amorphous precursor powders have proven to be highly advantageous for the sol–gel processing of TiO2 thin films. Oxide yield, density, solubility, and thermal degradation of powders prepared under various conditions were determined; the thermoanalytical data could be assigned to the oxidative decomposition of different organic constituents. Certain powders are suitable for the preparation of alcohol-based sols, whereas also aqueous coating solutions can be prepared from others. Thin films prepared from both systems show excellent adhesion and optical properties when deposited on borosilicate glass substrates.  相似文献   

18.
Phase diagrams have been designed for the systems Sc2S3-Ln2S3 where Ln = La, Nd, or Gd. In these systems, complex sulfides crystallize in orthorhombic space group Pnma. The sulfides melt congruently and have the following parameters; for LaScS3, a = 0.718 nm, b = 0.654 nm, c = 0.960 nm, 2000 K, 3200 MPa; for NdScS3, a = 0.712 nm, b = 0.646 nm, c = 0.952 nm, 1960 K, 3500 MPa; and for GdScS3, a = 0.704 nm, b = 0.640 nm, c = 0.946 nm, 1900 K, 3400 MPa. The extents of the solid solutions based on the existing phases increase as the effective ion radii of Ln3+ approaches that of Sc3+. At 1670 K, the LnScS3 homogeneity region is 48–52 mol % Nd2S3 and 46–54 mol % Gd2S3. Sc2S3 dissolves 3 mol % Nd2S3 and 6 mol % Gd2S3. γ-Nd2S3 dissolves 2 mol % Sc2S3, and γ-Gd2S3 dissolves 4 mol % Sc2S3. The subsystems Sc2S3-LnScS3 and LnScS3-Ln2S3 are of the eutectic type. The eutectic coordinates are, respectively, 27 mol % La2S3, 1880 K; 75 mol % La2S3, 1800 K; 30 mol % Nd2S3, 1850 K; 74 mol % Nd2S3, 1770 K; 33 mol % Gd2S3, 1800 K; and 74 mol % Gd2S3, 1730 K.  相似文献   

19.
Nanostructured TiO2–SnO2 thin films and powders were prepared by a facile aqueous particulate sol–gel route. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range 17.2–19.3 nm. Moreover, the sols were stable over 5 months, since the constant zeta potential was measured during this period. The effect of Sn:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction analysis revealed that the powders were crystallised at the low temperature of 400 °C containing anatase-TiO2, rutile-TiO2 and cassiterite-SnO2 phases, depending on annealing temperature and Sn:Ti molar ratio. Furthermore, it was found that SnO2 retarded the anatase to rutile transformation up to 800 °C. The activation energy of crystallite growth was calculated in the range 0.96–6.87 kJ/mol. Transmission electron microscope image showed that one of the smallest crystallite sizes was obtained for TiO2–SnO2 binary mixed oxide, being 3 nm at 600 °C. Field emission scanning electron microscope analysis revealed that the deposited thin films had nanostructured morphology with the average grain size in the range 20–40 nm at 600 °C. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of CO gas at low operating temperature of 200 °C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption.  相似文献   

20.
Today, the deposition of coated conductors on a variety of substrates is often performed using a vacuum or low pressure technique. However, obtaining uninterrupted deposition at high speed, increasing flexibility in composition and attaining independence of geometric constraints of the substrates are areas in which vacuum techniques will need sustained development in order to answer industrial demands. The development of the next generation of deposition methods, based on deposition under atmospheric environment and from aqueous precursor solutions is a real challenge. This work describes the deposition of thin NdBa2Cu3O7-y layers on SrTiO3 single crystals based on a new sol-gel dip coating process using aqueous precursor solutions. Two inorganic aqueous sol-gel routes were investigated, a metal nitrate–citric acid based and a metal acetate–triethanol amine based solution. Using detailed thermal analysis, it is shown that adjusting the different parameters during thermal treatment can be used to control the morphology of the films. Also special attention is given to the microstructure of the thin film because of its relevance to the superconducting transport properties of the coated conductor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号