首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integral enthalpies of dissolution Δsol H m of DL-valine are measured via calorimetry of dissolution in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol. Standard values of the enthalpies of dissolution (Δsol H ) and transfer (Δtr H ) of amino acid from water to mixed solvent are calculated from the resulting experimental data. The enthalpy coefficients for pair interactions hxy of amino acid with polyatomic alcohol molecules are calculated using the McMillan-Meyer theory and have positive values. The obtained results are discussed in light of the theory of the predomination of various types of interactions in mixed solutions and the effect of structural features of interacting biomolecules on the thermochemical parameters of the dissolution of amino acids.  相似文献   

2.
By the method of dissolution calorimetry integral enthalpies of dissolution Δsol H m of L-serine are measured in the mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at the concentration of the organic solvent up to 0.42 mole fraction. The standard values of enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) of amino acids from water to mixed solvents are calculated. The calculated values of the enthalpy coefficients of pair interactions of L-serine with the molecules of co-solvents are positive. The data obtained are interpreted in terms of prevalence of different types of interactions in solutions and the influence of nature of co-solvents on the thermochemical characteristics of the dissolved amino acids.  相似文献   

3.
Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ) and the transfer (Δtr H ) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.  相似文献   

4.
The integral enthalpies of dissolution Δsol H m of l-cysteine and l-asparagine in mixtures of water with acetonitrile and dimethyl sulfoxide at the concentration of organic solvent up to 0.32 molar fractions were measured by means of dissolution calorimetry. The standard enthalpies of dissolution (Δsol H°) and transfer (Δtrans H°) of the amino acids from water to a mixed solvent were calculated. The enthalpy coefficients of pair interactions for L-cysteine and L-asparagine with cosolvent molecules are positive, except for the L-asparagine-water-acetonitrile system. The concepts on the prevailing effect of specific interactions in solutions and the influence of the nature of the cosolvents and lateral substituents of the amino acids on the thermochemical characteristics of dissolution were used to explain the data obtained.  相似文献   

5.
A thermochemical study of the processes of L-proline dissolution in aqueous solutions of acetonitrile, 1,4-dioxane, acetone, dimethyl sulfoxide, nitromethane and tetrahydrofuran at Т = 298.15 K in the range of organic solvent concentrations x2 = 0–0.25 mole fractions is performed. Standard values of the enthalpies of solution and transfer of L-proline from water to mixed solvent, and the enthalpy coefficients of pairwise interactions between L-proline and molecules of organic solvents, are calculated. The effect the composition of a water–organic mixture and the structure of organic solvents have on the enthalpy characteristics of L-proline dissolution and transfer is examined. The effect the energy properties of intermolecular interactions between components of a mixed solvent has on the intermolecular interactions between L-proline and molecules of cosolvent is estimated. The correlation between the enthalpy characteristics of L-proline dissolution and electron-donor properties of organic cosolvent in aqueous solutions is determined.  相似文献   

6.
The method of dissolution calorimetry was used to measure the integral enthalpy of dissolution ??sol H m of DL-alanine in mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at a concentration of organic solvent up to 0.32 mole fraction. The standard dissolution enthalpy (??sol H 0) and transport enthalpy of amino acids from water to mixed solvent (??tr H 0) were calculated. The calculated enthalpy coefficients of pair interactions of the DL-alanine molecules with the polyol molecules are positive and less than these values for L-alanine. The effect of interactions of different types in solution and the structural features of biomolecules and co-solvents on the enthalpy of dissolution characteristics of amino acids were considered.  相似文献   

7.
The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (ΔsolH°) and transfer (ΔtrH°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions (h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.  相似文献   

8.
The integral enthalpies of dissolution Δsol H m of L-alanine in mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol under the concentration of organic solvents up to 0.32 mole fraction were measured by means of calorimetry. The standard values of the dissolution enthalpies (Δsol H o) and transfer enthalpies (Δtr H o) of amino acids from water to the mixed solvent were calculated. It was shown that the calculated enthalpic coefficients of pair interactions of L-alanine with cosolvent molecules have positive values. The data obtained are interpreted from the viewpoint of prevalence of different types of interactions in the solutions and influence of the cosolvents nature on the thermo-chemical characteristics of amino acid dissolution.  相似文献   

9.
Dissolution enthalpies of L-alpha-proline, L-alpha-tyrosine, L-alpha-tryptophan, L-alpha-histidyne, L-alpha-arginine, L-alpha-lysine, L-aspartic acid, and L-alpha-glutamic acid in aqueous solutions of urea have been measured by calorimetry at a temperature of 298.15 K. The values of dissolution enthalpy were used to determine enthalpic heterogeneous pair interaction coefficients between the zwitterions of the natural amino acids and a molecule of urea in water solution. These coefficients were interpreted in terms of the hydrophobic or hydrophilic effects of the side chains of amino acids on their interactions with a polar molecule of urea in water.  相似文献   

10.
Transition enthalpies (Δtr H o) of substances from water to binary solutions were calculated at 298.15 K on the basis of standard dissolution enthalpies (Δsol H o) for six amino acids and five dipeptides in the mixtures of water with organic solvents of various chemical natures. The enthalpy pair coefficients of interaction h xy for biomolecules with organic component of mixture were estimated within the formalism of the McMillan-Mayer theory. The change in the character of the interaction of the components of solution was demonstrated in dependence on the physicochemical properties of the solvent and nature of the side radical of the dissolved bioorganic substance. Quantitative estimation of the type of interaction of the substance with the solvent was performed on the basis of correlation ratios relating the enthalpy characteristics of bioorganic substances to properties of organic cosolvents. It was shown that in the solutions under study, the effects of both the specific (mainly electron donor) and non-specific solvation of amino acids and peptides are observed.  相似文献   

11.
The enthalpies of myricetin dissolution are measured by means of calorimetry with mol dilutions of flavonoid: 96 mol % ethanol equal to 1: 9000, 1: 18000, and 1: 36000. The standard enthalpies of dissolution for the biologically active substance in an infinitely diluted (standard) solution of 96% ethanol are calculated from the experimental data. Physicochemical means of approximation are used to estimate the values of the standard enthalpy of combustion, and the enthalpy of melting is calculated for the investigated flavonoid. Finally, the compound’s standard enthalpy of formation is calculated using the Hess cycle.  相似文献   

12.
Integral enthalpies of dissolution Δsol H m of L-cysteine in mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at concentrations of organic solvents of up to 0.37 mole fraction were measured by calorimetry of dissolution. The standard values of the dissolution enthalpies (Δsol H°) and the transfer enthalpies (Δtr H°) of amino acid from water to the mixed solvent were calculated. It was shown that the calculated enthalpic coefficients of the pair interactions of L-cysteine with cosolvent molecules have positive values. The obtained data are interpreted from the viewpoint of the prevalence of different types of interactions in the solutions and influence of the cosolvents nature on the thermochemical characteristics of amino acid dissolution.  相似文献   

13.
The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol Н 0) and transfer (Δtr Н 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan–Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.  相似文献   

14.
Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg–1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.  相似文献   

15.
The enthalpies of dissolution of benzene, nitrobenzene, and aniline in water–acetonitrile mixtures are determined via calorimetry. The concentration dependences of the standard enthalpies of solvation of solutes are calculated. It is found that the concentration dependences of the standard enthalpies of solvation pass through maxima. The height of the observed maxima is shown to depend largely on the nature of the substituent. In the presence of a hydrophilic amino group capable of forming strong hydrogen bonds with water molecules, the value of a maximum falls; in the presence of a nitro group, it rises. The enthalpy parameters of pair interaction between molecules of water and benzene and its derivatives are calculated.  相似文献   

16.
Integral dissolution enthalpies ??sol H m of L-asparagine in the mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at the concentration of organic solvents up to 0.24 mole fraction were measured by the calorimetry method. The standard enthalpies of dissolution (??sol H 0) and transport (??tr H 0) of amino acids from water to the mixed solvents were derived. The calculated enthalpy coefficients of the molecule pair interactions of L-asparagine-cosolvent are positive, except for the amino acid-glycerol-water system. The data obtained are interpreted in terms of prevalence of different types of interactions in solution and effect of the cosolvent nature on the thermochemical characteristics of the L-asparagine dissolution.  相似文献   

17.
The enthalpies of formation and dissolution of the ammonium and guanidinium picrates and dinitrobenzoate were determined by precision calorimetry. On the basis of the data obtained, the enthalpies of formation of the anions of the acids in indefinitely diluted aqueous solutions were calculated and the enthalpy of formation of potassium picrate was estimated.  相似文献   

18.
The thermochemical dissolution of L-valine in solvent mixtures H2O + (formamide, N-methylformamide, and N,N-dimethylformamide) is studied at an organic component concentration of x2 = 0–0.35 molar fractions and a temperature of 298.15 K. The experimental data are used to calculate standard enthalpies of dissolution, the transferring of L-valine from water to a mixed solvent, and the enthalpy coefficients of pairwise interactions (hxy) with organic solvent molecules. The correlation between the enthalpy characteristics of the dissolution of L-valine with the composition of aqueous organic mixtures and the nature of the organic solvent (its physicochemical properties) is determined. A comparative analysis of the values of hxy of a number of aliphatic L-amino acids in similar solvent mixtures with the hydrophobicity parameters of their side chains is performed.  相似文献   

19.
Enthalpies of dissolution of acetonitrile, propylene carbonate, and 1,4-dioxane in mixtures of water with acetone or DMSO were measured in the whole concentration range of the mixed solvents. Standard enthalpies of dissolution and enthalpies of transfer of solutes from water to its mixtures with acetone or DMSO were determined. In the region of small proportions of the nonaqueous component, the enthalpy of cavity formation in the mixed solvent makes the main contribution to the variation of the enthalpy of dissolution. An increase in the proportion of the nonaqueous component leads to competition between the contributions of cavity formation and specific interaction between the solute and the solvent during solvation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1747–1752, September, 1995.  相似文献   

20.
The enthalpies of solution of l-threonine in the (water + methanol), (water + ethanol), (water + n-propanol), and (water + i-propanol) mixtures, with an alcohol content up to 0.4 mol fractions, have been measured calorimetrically at T = 298.15 K. The standard enthalpies of solution and transfer of l-threonine from water to an aqueous alcohol have been calculated. The effect of the structure properties of the mixed solvent on the specified enthalpy characteristics of l-threonine is discussed. The enthalpy coefficients of pairwise interactions between amino acid and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in the methanol, ethanol, n-propanol, and i-propanol consequence. A comparative analysis of the thermodynamic characteristics of dissolution of l-threonine and some other amino acids (glycine, l-alanine and l-valine) in the mixtures studied has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号