首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Qian  Kun  Hao  Furui  Wei  Shuhai  Wang  Yihong  Ge  Cunwang  Chen  Ping  Zhang  Yihong 《Journal of Solid State Electrochemistry》2017,21(1):297-304
Journal of Solid State Electrochemistry - The preparation of well-dispersed nanoparticles (NPs) has been one of the challenges in the development of nanoscale processing. Here, we firstly prepared...  相似文献   

2.
PtRu 1D nanostructures on titanium are prepared and analysed as electrocatalysts for methanol electrooxidation. The morphology and composition of the 1D nanostructure are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic properties of such catalysts for methanol oxidation are investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in 1.0 M CH3OH + 0.5 M H2SO4 aqueous solution. The results show that Pt46Ru54 nanotubes yields to a five-fold improvement of the mass specific activity and to a three-fold improvement of the long-term poisoning rate as compared to PtRu black of similar composition.  相似文献   

3.
采用一种无需使用任何有机表面活性剂或溶剂的方法,在熔融盐体系中制备了铂银纳米合金颗粒,考察了合金中元素银对碱性电解质中甲醇电氧化反应(MOR)的催化作用。透射电子显微镜表征结果显示,当前躯体铂银物质的量比为1时,可以得到组成为Pt52Ag48的合金纳米管。甲醇电氧化反应测试结果表明,具有干净表面的Pt52Ag48纳米管比常规的Pt黑具有更好的催化性能。Pt52Ag48合金纳米管的催化活性与其最大正扫电位密切相关,正扫电位从-1.0到0.5 V(vs.SCE),MOR峰值电流达到1.61 mA/μgPt,是从-1.0到0.1 V(vs.SCE)正扫电位的1.92倍。铂银合金表面层中的Ag元素主要通过在电化学循环中发生氧化还原反应来促进合金的MOR活性。研究结果可以为铂银合金在直接甲醇燃料电池(DMFC)中的应用提供理论支持。  相似文献   

4.
The hierarchical nanoporous (NP) PtFe alloy with multimodal size distributions is straightforwardly fabricated by means of mild de-alloying of the PtFeAl source alloy. This interesting NP structure consists of interconnected larger ligaments around hundreds of nanometers, in which these ligaments are also composed of the three-dimensional network structure with the typical size at 3 nm. In comparison to NP-Pt and Pt/C catalysts, the as-made alloy nanostructure exhibits superior electrocatalytic activity for the methanol oxidation reaction (MOR) with higher catalytic durability and CO tolerance besides the enhanced specific and mass activity. NP-PtFe also shows improved structure stability with the less loss of the electrochemical surface area of Pt upon long-term potential scan in acidic solution. X-ray photoelectron spectroscopy and density functional theory calculations demonstrate that the incorporation of Fe appropriately modified the electron structure of Pt with the downshift of the Pt d-band center, leading to a decreased CO poisoning and an improved MOR activity.  相似文献   

5.
Deposition of platinum(Pt)monolayers(PtML)on Au substrate represents a robust strategy to maximally utilize the Pt atoms and meanwhile achieve high catalytic activity towards methanol oxidation reaction for direct methanol fuel cells owing to a substrate-induced tensile strain effect.However,recent studies showed that Pt(ML)on Au substrate are far from perfect smooth monoatomic layer,but actually exhibited three-dimensional nanoclusters.Moreover,the Pt(ML)suffered from severe structural instability and thus activity degradation during long-term electrocatalysis.To regulate the growth of Pt(ML)Au surface and also to improve its structural stability,we exploit dealloyed AuCu core-shell nanoparticles as a new substrate for depositing Pt(ML).By using high-resolution scanning transmission electron microscopy and energy dispersive X-ray elemental mapping combined with electrochemical characte rizations,we reveal that the dealloyed AuCu core-shell nanoparticles can effectively promote the deposition of Pt(ML)closer to a smooth monolayer structure,thus leading to a higher utilization efficiency of Pt and higher intrinsic activity towards methanol oxidation compared to those on pure Au nanoparticles.Moreover,the Pt(ML)deposited on the AuCu core-shell NPs showed substa ntially enhanced stability compared to those on pure Au NPs during long-term electrocatalysis over several hours,during which segregation of Cu to the Au/Pt interface was revealed and suggested to play an important role in stabilizing the Pt(ML)catalysts.  相似文献   

6.
In this work, we describe a facile single-step approach for the simultaneous reduction of graphene oxide to graphene, functional doping of graphene with nitrogen, and loading of the doped graphene with well-dispersed platinum (Pt) nanoparticles using a solvent mixture of ethylene glycol and N-methyl-2-pyrrolidone. The as-prepared Pt/nitrogen-doped graphene (N-graphene) catalysts are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy while the electrocatalytic methanol oxidation properties of the catalysts are evaluated by cyclic voltammetry and chronoamperometry. Compared with an updoped Pt/graphene control catalyst, the Pt/N-graphene catalyst shows a narrower particle size distribution and improved catalytic performance. Considering the facile, green and effective single-step synthetic process for the Pt/N-graphene catalyst, the results are promising for the potential application of these materials in emerging fuel cell technologies.  相似文献   

7.
Bimetallic palladium–nickel (PdNi2) alloy catalyst has been prepared for the electrooxidation of formic acid through a simple electrodepositing approach. Scanning Electron Microscopy and X-ray Diffraction revealed that the particle morphology and the crystalline lattice of PdNi2 alloy were highly different from those of Pd. Although the PdNi2 catalyst had less noble Pd content, the cyclic voltammetry and chronoamperometry results clearly demonstrated that its catalytic activity was significantly higher than that of Pd. The novel enhancement of catalytic activity was mainly ascribed to the weak absorption strength of intermediates on Pd through the interaction between Pd and additive Ni, which facilitated the formic acid oxidation through direct pathway.  相似文献   

8.
We report the synthesis and characterization of new Ni(x)Ru(1-x) (x = 0.56-0.74) alloy nanoparticles (NPs) and their catalytic activity for hydrogen release in the ammonia borane hydrolysis process. The alloy NPs were obtained by wet-chemistry method using a rapid lithium triethylborohydride reduction of Ni(2+) and Ru(3+) precursors in oleylamine. The nature of each alloy sample was fully characterized by TEM, XRD, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). We found that the as-prepared Ni-Ru alloy NPs exhibited exceptional catalytic activity for the ammonia borane hydrolysis reaction for hydrogen release. All Ni-Ru alloy NPs, and in particular the Ni(0.74)Ru(0.26) sample, outperform the activity of similar size monometallic Ni and Ru NPs, and even of Ni@Ru core-shell NPs. The hydrolysis activation energy for the Ni(0.74)Ru(0.26) alloy catalyst was measured to be approximately 37?kJ?mol(-1). This value is considerably lower than the values measured for monometallic Ni (≈70?kJ?mol(-1)) and Ru NPs (≈49?kJ?mol(-1)), and for Ni@Ru (≈44?kJ?mol(-1)), and is also lower than the values of most noble-metal-containing bimetallic NPs reported in the literature. Thus, a remarkable improvement of catalytic activity of Ru in the dehydrogenation of ammonia borane was obtained by alloying Ru with a Ni, which is a relatively cheap metal.  相似文献   

9.
Heterostructures have emerged as elaborate structures to improve catalytic activity owing to their combined surface and distinct inverse interface. However, fabricating advanced nanocatalysts with facetdependent interface remains an unexploited and promising area. Herein, we render the controlled growth of Pt nanoparticles(NPs) on Pd nanosheets(NSs) by regulating the reduction kinetics of Pt2+with solvents. Specifically, the fast reduction kinetic makes the Pt NPs uniformly deposited ...  相似文献   

10.
We report cuboctahedral Pd nanoparticles on WC synthesized by the polyol process using ethylene glycol with NO(3)(-) and Fe(3+)/Fe(2+) ions. The cuboctahedral Pd/WC shows much improved electrocatalytic activity for methanol electrooxidation in alkaline solution.  相似文献   

11.
This paper shows that an introduction of thiosulfate anions in place of bromide anions greatly improves both chemical and thermal stability of tetraoctylammonium-protected gold nanoparticles. Tetraoctylammonium thiosulfate [(Oct)4N+-O3SS]-protected gold nanoparticles are synthesized by the reduction of (Oct)4N+-AuCl4 to Au(I)-SSO3-, followed by the addition of sodium borohydride. The presence of thiosulfate anions instead of bromide anions on the surface of gold nanoparticles results in a significant dampening of the surface plasmon band of gold at 526 nm due to the strong interaction between thiosulfate and the gold nanoparticle surface. Cyanide decomposition and heating treatment studies suggest that (Oct)4N+-O3SS-protected nanoparticles have much higher overall stability compared to (Oct)4N+-Br-protected gold nanoparticles.  相似文献   

12.
Uniform platinum nanotubes have been synthesized by directly mixing Ag nanowires and H2PtCl6 in saturated NaI solutions at room temperature. The crystal structure of the obtained Pt nanotube has been investigated in detail by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Furthermore, their electrocatalytic behaviors for methanol oxidation in alkaline media have also been studied. Compared with conventional Pt/C catalysts, these hollow nanostructures possess high electrochemical active areas and demonstrate higher current densities.  相似文献   

13.
We report the combinatorial and high-throughput optimization of improved ternary Pt alloy electrocatalysts for the oxidation of methanol for use in direct methanol fuel cell (DMFC) anodes. Following up on the discovery of a ternary Pt20Co60Ru20 catalyst with significantly improved electrocatalytic activity for methanol oxidation over standard Pt-Ru catalysts, we optimize the electrocatalytic activity of this composition using a closely sampled Pt-Co-Ru "optimization library". We also screen for compositional and structural stability using high-throughput methods. Composition-activity maps confirmed improved activity in compositional neighborhood of the Pt20Co60Ru20 catalyst. Activity trends of Pt-Ru binary alloys were in excellent agreement with fundamental surface electrochemical studies. Structural and compositional catalyst stability was probed using X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). Combination of the stability-composition and activity-composition maps resulted in "consensus maps" pointing to a new optimized ternary alloy electrocatalyst for methanol electrooxidation with an overall composition of Pt18Co62Ru20.  相似文献   

14.
Shell-core nanostructured carbon materials with a nitrogen-doped graphitic layer as a shell and pristine carbon black particle as a core were synthesized by carbonizing the hybrid materials containing in situ polymerized aniline onto carbon black. In an N-doped carbon layer, the nitrogen atoms substitute carbon atoms at the edge and interior of the graphene structure to form pyridinic N and quaternary N structures, respectively. As a result, the carbon structure becomes more compact, showing curvatures and disorder in the graphene stacking. In comparison with nondoped carbon, the N-doped one was proved to be a suitable supporting material to synthesize high-loading Pt catalysts (up to 60 wt %) with a more uniform size distribution and stronger metal-support interactions due to its high electrochemically accessible surface area, richness of disorder and defects, and high electron density. Moreover, the more rapid charge-transfer rates over the N-doped carbon material are evidenced by the high crystallinity of the graphitic shell layer with nitrogen doping as well as the low charge-transfer resistance at the electrolyte/electrode interface. Beneficial roles of nitrogen doping can be found to enhance the CO tolerance of Pt catalysts. Accordingly, an improved performance in methanol oxidation was achieved on a high-loading Pt catalyst supported by N-doped carbon. The enhanced catalytic properties were extensively discussed based on mass activity (Pt utilization) and intrinsic activity (charge-transfer rate). Therefore, N-doped carbon layers present many advantages over nondoped ones and would emerge as an interesting supporting carbon material for fuel cell electrocatalysts.  相似文献   

15.
杨慧敏  张佰艳  张斌  高哲  覃勇 《催化学报》2018,39(6):1038-1043
甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注. 贵金属 Pt 是甲醇燃料电池阳极催化剂不可缺少的活性组分, 但 Pt 价格昂贵, 易与 CO 等中间体强相互作用而中毒失活, 从而限制了甲醇燃料电池的广泛应用. 因此, 如何提高Pt 的利用率成为一个关键问题. 研究表明, 在碳材料载体中掺杂氮元素, 改变了载体本身的表面结构和电子性质, 有利于Pt 颗粒的成核和生长, 可获得尺寸小、分布均匀的 Pt 纳米颗粒, 能显著提升催化反应活性和 Pt 利用率. 然而, 传统的氮掺杂方法需要在高温、高压及氨气条件下进行, 增加了催化剂制备难度和成本.原子层沉积技术是逐层超薄沉积技术, 能够在原子级别精确控制膜的厚度, 既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰. 本课题组利用原子层沉积技术优势, 首先在碳纳米管表面沉积了直径 2 nm 左右的 Pt纳米颗粒, 然后在 Pt 纳米颗粒外表面超薄修饰聚酰亚胺膜, 通过后处理得到多孔掺氮碳膜修饰的 Pt/CNTs 催化剂. 碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制. 结果表明, 适当厚度的碳膜修饰 Pt/CNTs 催化剂可显著提升其甲醇电氧化性能, 电流密度可达商业 20% Pt/C 的 2.7 倍, 催化剂稳定性也显著改善. 然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现, 超薄修饰碳膜后催化剂活性表面积有所降低, 这是由于碳膜的覆盖导致表面 Pt原子数减少. 修饰前后催化剂颗粒尺度变化不大, 推测催化剂活性的提高与形成了有利于催化反应的 Pt-碳膜界面有关.然而, 当碳膜修饰层过厚时, 会导致反应物分子难以扩散到 Pt 颗粒表面, 使催化剂活性降低. 预吸附单层 CO 溶出实验结果表明, 多孔掺氮碳膜超薄修饰 Pt/CNTs 催化剂后, CO 氧化峰的起始电位和峰值电位都向低电位处偏移, 这表明 Pt 表面吸附的 CO 在较低电位下即可被氧化, CO 更容易从 Pt 表面移除, 从而提高了催化剂的抗 CO 毒化能力. X 射线光电子能谱实验结果进一步表明, 经多孔掺氮碳膜修饰后, Pt 的 4f 电子向高结合能处偏移, 表明 Pt 原子周围的电子密度减小, 从而弱化了 Pt 对 CO 吸附的σ-π键反馈作用, 即减弱了 Pt 原子对 CO 的吸附, 这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.  相似文献   

16.
Honeycomb-like porous carbons (PCs) were synthesized using a facile self-assembly method with phenolic resin as the carbon source and tetraethyl orthosilicate (TEOS) as the silica source. The PCs were found to have a large BET surface area of 458 m2 g?1 and a partially graphitized structure. The obtained PCs were used as a support for various Pt-Pd bimetallic alloy catalysts employed for methanol oxidation in alkaline media. Compared with Pt supported on commercial Vulcan XC-72R carbon (Pt/C) and with the other Pt-Pd bimetallic alloy catalysts on PCs, Pt3Pd1 on PCs displayed the most negative onset potential for methanol oxidation and the highest steady-state current (2.04 mA cm?2). This may be because the Pt3Pd1/PCs catalyst has the largest electrochemical active surface area (ESA), and because adding Pd to the catalyst improves the ability of the intermediate species to tolerate oxidation. The results show that the prepared Pt-Pd/PCs is a potential candidate for application as a catalyst in alkaline direct methanol fuel cells.  相似文献   

17.
In this paper, carbon nitride nanotubes (CNNTs) have been synthesized with porous anodic aluminum oxide membrane as template by the thermal polymerization of sol–gel precursors for the first time. Field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, elemental analysis and X-ray photoelectron spectroscopy were applied to characterize the morphology and composition of the as-prepared nanotubes. The electrocatalytic activity and stability of CNNTs, towards methanol electrooxidation in 0.5 mol/dm3 H2SO4 solutions containing 1 mol/dm3 CH3OH are presented at room temperature.  相似文献   

18.
Reactivity towards methanol and formic acid electrooxidation on Pt nanoparticles with well characterised surfaces were studied and compared with the behaviour of single crystal electrodes with basal orientations. Polyoriented and preferential (100), (111) and (100)-(111) Pt nanoparticles were synthesised, cleaned preserving its surface structure, characterised and employed to evaluate the influence of the surface structure/shape of the Pt nanoparticles on these two relevant electrochemical reactions. The results pointed out that, in agreement with fundamental studies with Pt single crystal electrodes, the surface structure of the electrodes plays an important role on the reactivity of both oxidation processes, and thus the electrocatalytic properties strongly depend on the surface structure/shape of the nanoparticles, in particular on the presence of sites with (111) symmetry. These findings open the possibility of designing new and better electrocatalytic materials using decorated shape-controlled Pt nanoparticles as previously described with Pt single crystal electrodes.  相似文献   

19.
The coin-like hollow carbon (CHC) has been synthesized by only using ethanol as the carbon source with a novel Mg/NiCl2 catalytic system via a facile solvothermal method for the first time. The CHC synthesized at optimized conditions shows an average thickness of less than 154 nm and the coin diameter of 1–3 μm. The CHC is characterized by SEM, TEM, XRD and electrochemical techniques. Pd on CHC (denotes as Pd/CHC) electrocatalysts are prepared for methanol oxidation in alkaline media. The Pd/CHC electrocatalyst gives a mass activity of 2930 A g−1 Pd for methanol oxidation against 870 A g−1 Pd on Pd/C electrocatalyst. One main reason for the higher mass activity of the Pd/CHC is the higher electrochemical active surface area (EASA) of the Pd/CHC.  相似文献   

20.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号