首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
Improving the efficiency of electron–hole separation and charge‐carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal–organic framework (MOF), UiO‐66‐NH2, denoted as Pt@UiO‐66‐NH2 and Pt/UiO‐66‐NH2, respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt‐decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen‐production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO‐66‐NH2 greatly shortens the electron‐transport distance, which favors the electron–hole separation and thereby yields much higher efficiency than Pt/UiO‐66‐NH2. The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy.  相似文献   

2.
Metal–organic framework (MOF)/polymer mixed matrix membranes (MMMs) have received significant interest in the last decade. MOFs are incorporated into polymers to make MMMs that exhibit improved gas permeability and selectivity compared with pure polymer membranes. The fundamental challenge in this area is to choose the appropriate MOF/polymer combinations for a gas separation of interest. Even if a single polymer is considered, there are thousands of MOFs that could potentially be used as fillers in MMMs. As a result, there has been a large demand for computational studies that can accurately predict the gas separation performance of MOF/polymer MMMs prior to experiments. We have developed computational approaches to assess gas separation potentials of MOF/polymer MMMs and used them to identify the most promising MOF/polymer pairs. In this Personal Account, we aim to provide a critical overview of current computational methods for modeling MOF/polymer MMMs. We give our perspective on the background, successes, and failures that led to developments in this area and discuss the opportunities and challenges of using computational methods for MOF/polymer MMMs.  相似文献   

3.
Metal–organic frameworks (MOFs) are a promising class of nanoporous polymeric materials. However, the processing of such fragile crystalline powders into desired shapes for further applications is often difficult. A photoinduced postsynthetic polymerization (PSP) strategy was now employed to covalently link MOF crystals by flexible polymer chains, thus endowing the MOF powders with processability and flexibility. Nanosized UiO‐66‐NH2 was first functionalized with polymerizable functional groups, and its subsequent copolymerization with monomers was easily induced by UV light under solvent‐free and mild conditions. Because of the improved interaction between MOF particles and polymer chains, the resulting stand‐alone and elastic MOF‐based PSP‐derived membranes possess crack‐free and uniform structures and outstanding separation capabilities for CrVI ions from water.  相似文献   

4.
Metal–organic frameworks (MOFs) are considered ideal membrane candidates for energy-efficient separations. However, the MOF membrane amount to date is only a drop in the bucket compared to the material collections. The fabrication of an arbitrary MOF membrane exhibiting inherent separation capacity of the material remains a long-standing challenge. Herein, we report a MOF modular customization strategy by employing four MOFs with diverse structures and physicochemical properties and achieving innovative defect-free membranes for efficient separation validation. Each membrane fully displays the separation potential according to the MOF pore/channel microenvironment, and consequently, an intriguing H2/CO2 separation performance sequence is achieved (separation factor of 1656–5.4, H2 permeance of 964–2745 gas permeation unit). Taking advantage of this strategy, separation performance can be manipulated by a non-destructive modification separately towards the MOF module. This work establishes a universal full-chain demonstration for membrane fabrication-separation validation-microstructure modification and opens an avenue for exclusive customization of membranes for important separations.  相似文献   

5.
由于MOF(金属有机骨架)膜与基底之间的作用力较薄弱,所以制备具有高的H_2渗透性和H_2/CO_2选择性的致密连续的大面积金属有机骨架膜仍具有巨大挑战。本文选取多孔Al_2O_3作为基底,在表面涂覆一层PIM-1(一种固有微孔聚合物),并对其进行羧基化处理,使得表面具有大量的羧基基团,随后利用羧基与金属之间的相互作用,原位生长得到了两种致密连续的聚合物支撑的MOF膜(PIM-1-COOH/ZIF-8和PIM-1-COOH/HKUST-1)。通过XRD的表征可以看出MOF膜是纯相的并且具有较高的结晶性;SEM的测试结果表明MOF膜是致密连续的并且MOF膜与基底之间紧密结合。气体分离测试结果表明,这两种MOF膜对H_2具有较高的渗透性以及H_2/CO_2选择性。在常温常压下,对于PIM-1-COOH/ZIF-8和PIM-1-COOH/HKUST-1膜,H_2/CO_2双组分气体的分离系数分别为7.32、9.69,并且它们H_2的渗透通量分别高于3.16×10~(-6)、1.14×10~(-6) mol·m~(-2)·s~(-1)·Pa~(-1)。在单组份测试中,这两种MOF膜的H_2/CO_2的理想分离系数分别为7.70、12.04;H_2的渗透通量分别高达3.73×10~(-6)、3.86×10~(-6) mol·m~(-2)·s~(-1)·Pa~(-1),这就表明这两种MOF膜有望在H_2的纯化和分离方面广泛应用。  相似文献   

6.
Two-dimensional (2D) metal–organic framework (MOF) membranes are considered potential gas separation membranes of the next generation due to their structural diversity and geometrical functionality. However, achieving a rational structure design for a 2D MOF membrane and understanding the impact of MOF nanosheet stacking modes on membrane separation performance remain challenging tasks. Here, we report a novel kind of 2D MOF membrane based on [Cu2Br(IN)2]n (IN=isonicotinato) nanosheets and propose that synergetic stacking modes of nanosheets have a significant influence on gas separation performance. The stacking of the 2D MOF nanosheets is controlled by solvent droplet dynamic behaviors at different temperatures of drop coating. Our 2D MOF nanosheet membranes exhibit high gas separation performances for H2/CH4 (selectivity >290 with H2 permeance >520 GPU) and H2/CO2 (selectivity >190 with H2 permeance >590 GPU) surpassing the Robeson upper bounds, paving a potential way for eco-friendly H2 separation.  相似文献   

7.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

8.
赵晨  曹蓉  夏杰桢  吴琪 《化学通报》2024,87(3):317-324,316
金属有机框架(Metal-organic framework ,MOF)因其高孔隙率、高比表面积和结构可调性,在气体吸附分离领域广泛应用。随着MOF数量激增,传统分子模拟和实验方法验证MOF性能成本高且速度慢,因此目前MOF筛选工作已转向高通量计算辅助的机器学习(Machine-learning,ML)。机器学习作为一种高效的大数据处理方法,能够在高通量筛选(High-Throughput Computational Screening,HTCS)的基础上对数据进行拟合,从而快速而准确地筛选出气体吸附分离材料,并深入挖掘其结构与性能之间的关系。本文回顾了近年机器学习应用于MOF筛选的研究。本文重点讨论了一些运用机器学习从大量结构中筛选出可用于CH4、H2和CO2等气体吸附分离与储存的MOF材料的工作。同时,我们梳理了当前MOF材料筛选工作中的研究思路和进展,并指出了机器学习在筛选MOF材料工作中面临的一些瓶颈和挑战。最后,对该领域的未来发展前景进行了展望。  相似文献   

9.
A wide range of light absorption and rapid electron–hole separation are desired for efficient photocatalysis. Herein, on the basis of a semiconductor‐like metal–organic framework (MOF), a Pt@MOF/Au catalyst with two types of metal–MOF interfaces integrates the surface plasmon resonance excitation of Au nanorods with a Pt‐MOF Schottky junction, which not only extends the light absorption of the MOF from the UV to the visible region but also greatly accelerates charge transfer. The spatial separation of Pt and Au particles by the MOF further steers the formation of charge flow and expedites the charge migration. As a result, the Pt@MOF/Au presents an exceptionally high photocatalytic H2 production rate by water splitting under visible light irradiation, far superior to Pt/MOF/Au, MOF/Au and other counterparts with similar Pt or Au contents, highlighting the important role of each component and the Pt location in the catalyst.  相似文献   

10.
The effect of organic ligands on the separation performance of Zr based metal–organic framework (Zr‐MOF) membranes was investigated. A series of Zr‐MOF membranes with different ligand chemistry and functionality were synthesized by an in situ solvothermal method and a coordination modulation technique. The thin supported MOF layers (ca. 1 μm) showed the crystallographic orientation and pore structure of original MOF structures. The MOF membranes show excellent selectivity towards hydrogen owing to the molecular sieving effect when the bulkier linkers were used. The molecular simulation confirmed that the constricted pore apertures of the Zr‐MOFs which were formed by the additional benzene rings lead to the decrease in the diffusivity of larger penetrants while hydrogen was not remarkably affected. The gas mixture separation factors of the MOF membranes reached to H2/CO2=26, H2/N2=13, H2/CH4=11.  相似文献   

11.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

12.
手性金属-有机骨架材料(MOFs)作为一种新型多孔材料,由于具有比表面积大、结构多样、孔尺寸可调和化学稳定性良好等特点,而备受色谱分离领域的关注。该文以(1R,2R)-1,2-环己烷二甲酸(H2L)和4,4'-联吡啶(bpy)为配体与铜离子反应,通过溶剂热法合成了一种具有二维手性网状结构的手性MOF[Cu_3(HL)_2(L)_2(bpy)_3]·4H_2O。将该手性MOF作为手性固定相制备了高效液相色谱柱。为了考察MOF[Cu_3(HL)_2(L)_2(bpy)_3]·4H_2O的手性识别能力,在正相色谱(流动相:正己烷-异丙醇)条件下,对一系列外消旋化合物在手性MOF柱上进行了拆分。该手性MOF柱对醇类、酮类、酸类、环氧化合物和醚类等10种手性化合物表现出较好的拆分效果。对该手性MOF柱的重现性、稳定性作了评价,考察了进样量对分离效果的影响,结果表明该手性MOF柱具有较好的重现性和稳定性。  相似文献   

13.
Two-dimensional (2D) metal-organic frameworks (MOF) nanosheets have emerged as novel membrane materials for gas separation. However, the development of ultrathin MOF membranes with tunable separation performances is still a challenge. Herein, we developed a facile GO-assisted restacking method to fabricate defect-free membranes with monolayer Zr-BTB nanosheets. Obtained ultrathin membranes ranging from 130 nm to 320 nm show tunable separation performances and exceed the 2008 Robeson upper bound by changing the amount of nanolayers in vertical stacking direction. Furthermore, a heating filtration method was used to change the restacking process of nanosheets in the horizontal direction. As a result, H2/CO2 selectivity can be enhanced by two times with the same membrane thickness (130 nm) and H2 permeance is almost maintained to be 7.0×10−7 mol m−2 s−1 pa−1. This method may provide a possible way to efficiently tune the gas separation performances of MOF membranes.  相似文献   

14.
The development of porous composite materials is of great significance for their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. Now mesoporous metal–organic frameworks (MOFs) with macroporous melamine foam (MF) have been integrated using a one‐pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball‐and‐stick model overall. The resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite has higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance.  相似文献   

15.
Homochiral metal–organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high‐quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF–polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL‐53‐NH2 nanocrystals by post‐synthetic modification with amino acids, such as l ‐histidine (l ‐His) and l ‐glutamic acid (l ‐Glu). The MIL‐53‐NH‐l ‐His and MIL‐53‐NH‐l ‐Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1‐phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large‐scale homochiral MOF‐based MMMs for chiral separation.  相似文献   

16.
Metal–organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF‐62 MOF glass membrane and exploited its intrinsic gas‐separation properties. The MOF glass membrane was fabricated by melt‐quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF‐62 MOF membrane on a porous ceramic alumina support. The molten ZIF‐62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2/CH4, CO2/N2 and CO2/CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.  相似文献   

17.
朱鹏静  陶勇  章俊辉  字敏  袁黎明 《色谱》2016,34(12):1219-1227
金属有机骨架(MOFs)材料因具有丰富的拓扑结构、高比表面积、良好的稳定性、持久的孔结构以及可修饰的孔道表面等特点,在对映选择性催化和手性分离方面备受关注。该文通过水热法合成了3种具有手性的MOFs晶体,分别为Co2(D-cam)2(TMDPy)(简称为MOF 1)、[Cd(D-cam)(tmdpy)]·2H2O(简称为MOF 2)和[Co0.5Zn0.5(L-Tyr)]n(L-tyrCo/Zn)(简称为MOF 3),并把它们用作固定相分别制成MOFs手性柱进行开管毛细管电色谱(OT-CEC)研究。在磷酸二氢钠-乙腈的流动相体系下,考察了3根MOFs手性柱对手性化合物的拆分性能。实验结果表明,这3种MOFs手性毛细管柱对部分外消旋体具有较好的拆分效果。目前将手性MOFs作为毛细管电色谱手性分离的研究正处在起步阶段并且具有良好的应用前景。  相似文献   

18.
The structure and properties of materials are determined by a diverse range of chemical bond formation and breaking mechanisms, which greatly motivates the development of selectively controlling the chemical bonds in order to achieve materials with specific characteristics. Here, an orientational intervening bond-breaking strategy is demonstrated for synthesizing ultrathin metal–organic framework (MOF) nanosheets through balancing the process of thermal decomposition and liquid nitrogen exfoliation. In such approach, proper thermal treatment can weaken the interlayer bond while maintaining the stability of the intralayer bond in the layered MOFs. And the following liquid nitrogen treatment results in significant deformation and stress in the layered MOFs’ structure due to the instant temperature drop and drastic expansion of liquid N2, leading to the curling, detachment, and separation of the MOF layers. The produced MOF nanosheets with five cycles of treatment are primarily composed of nanosheets that are less than 10 nm in thickness. The MOF nanosheets exhibit enhanced catalytic performance in oxygen evolution reactions owing to the ultrathin thickness without capping agents which provide improved charge transfer efficiency and dense exposed active sites. This strategy underscores the significance of orientational intervention in chemical bonds to engineer innovative materials.  相似文献   

19.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

20.
The synthesis of a metal–organic framework (MOF) named IITI‐1 is reported by employing an H2L linker with Cu(NO3)2?3 H2O in a mixed solvent system of N,N‐dimethyl formamide (DMF) and H2O. Further, in order to explore the energy storage application of IITI‐1 , a IITI‐1/CNT hybrid was prepared by a simple ultrasonication technique. Incorporation of a carbon nanotube (CNT) in the layered IITI‐1 MOF gave rise to enhanced electrolyte accessibility along with improved electrochemical storage capacity. The electrochemical investigations reveal a high specific capacitance (380 F g?1 at 1.6 A g?1) with a good rate performance for IITI‐1/CNT . The IITI‐1 MOF and the IITI‐1/CNT composite were characterized by PXRD, BET, SEM, and TEM techniques. Moreover, IITI‐1 MOF was also confirmed by single‐crystal XRD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号