共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
以BBOT为电子传输层的聚合物蓝色发光二极管 总被引:7,自引:0,他引:7
在前篇文章中[1]我们报导了以perylene掺杂的PVCz聚合物单层电致发光器件,得到蓝色发光,其亮度为59(cd/m2).在这篇文章中,我们以PVCz作为空穴传导层,BBOT为电子传导层制成了双层结构的发光二极管.亮度和效率都大大超过单层器件. 相似文献
4.
5.
6.
为了提高蓝色有机发光二极管的效率,本文借助溶液法采用TcTa和CzSi混合主体,制备了蓝色磷光有机发光二极管(PHOLEDs)。此外,针对三种电子传输材料Tm3PyP26PyB、TmPyPB和TPBi进行了优选,以进一步优化器件的效率。本文通过优化混合主体材料的掺杂比例和电子传输材料的选择,不断提高器件的效率。最终,当TcTa∶CzSi的掺杂比为6∶1、电子传输层TPBi为70 nm时器件性能最优,其最大亮度(Bmax)、电流效率(CEmax)、功率效率(PEmax)和外量子效率(EQEmax)分别为6 662 cd·m-2、39.40 cd·A-1、23.33 lm·W-1和19.7%。此外,即使在1 000 cd·m-2的实际亮度下,电流效率和外量子效率仍高达33.43 cd·A-1和16.7%。 相似文献
7.
以B 3 PyMPM∶Cs/Al/HAT-CN作为电荷生成单元制备高效叠层绿色磷光有机电致发光器件,叠层器件的最大电流效率和最大流明效率分别为172.2 cd/A和111.0 lm/W,在5 mA/cm^2电流密度下,叠层器件的电压和亮度分别为传统器件的2.04倍和2.84倍.为了探究叠层器件性能优于传统器件的原因,研究了电荷生成单元内的电荷产生和注入过程,以及薄层铝对电子注入特性和电荷生成单元稳定性的影响.实验结果表明,电荷能够有效地在电荷生成单元内产生并顺利注入电子传输层中,B3PyMPM∶Cs和HAT-CN间Al薄层的插入能够进一步提高电子注入效率及器件结构的稳定性. 相似文献
8.
以Ⅱ-Ⅵ族无机半导体ZnO为电子传输层,PPV为空穴传输层和发光层,得到的电致发光器件比单层PPV器件的发光亮度和效率都高.器件结构为ITO/PPV/ZnO/Al的电致发光光谱同单层PPV器件的光谱基本相同,但是启亮电压明显比单层器件低,最大亮度大约比单层器件高6倍左右,同时工作电流也比单层器件小.通过PPV层自吸收现象可判断出发光区域在PPV/ZnO界面处.电流-电压曲线表明,这种器件具有空间电荷限制电流特性,即J∝Vn,这里n大约为2,这器件的电流主要受到空穴的限制. 相似文献
9.
以9,9'-(1,3-苯基)二-9H-咔唑(m CP)和1,4-二(三苯甲硅烷基)苯(UGH2)为母体,将常用的蓝光染料二(3,5-二氟-2-(2-吡啶)苯基-(2-吡啶甲酸根))合铱(Ⅲ)(FIrpic)掺入这两种母体材料中,制得具有双发光层结构的蓝色磷光有机电致发光器件,并对整个物理机制进行了阐述。该器件较基于m CP或UGH2为母体的单发光层器件有着更高的器件效率。器件的最大电流效率、功率效率、外量子效率分别为21.13 cd/A、14.97 lm/W、10.56%。器件亮度从100 cd/m2到3 000 cd/m2时,效率滚降为34.2%。 相似文献
10.
绿色GIr1和红色R-4B磷光染料,采用红绿红、绿红、红绿、绿红绿等顺序,与主体材料CBP共蒸,制备了四种红绿磷光器件,并结合TCTA和BCP对载流子和激子的阻挡作用,研究了发光层掺杂顺序对器件性能的影响。结果表明,四种器件光谱、光效、亮度和发光颜色均有较大差异,且BCP和CBP界面附近是主要的激子复合区。在电压为5v,红绿红掺杂型器件,亮度、电流效率和色坐标分别为40.12 cd·m-2,7.68 cd·A-1 和(0.630 1,0.365 4);而绿红绿掺杂型器件为104 cd·m-2,19.75cd·A-1和(0.371 7,0.576 8)。分析认为:CBP与GIr1,R-4B,BCP,TCTA有较大的LUMO能级差异,发光层中电子的主要传输方式为掺杂分子上的俘获和分子间跳跃,不同掺杂顺序会形成不同能级势垒分布,发光层内电荷累积形成的空间电场分布不同。 相似文献
11.
制作了结构为ITO/2T-NATA (20 nm)/NPB(60 nm)/Zn(BTZ)2 : Ir(DBQ)2(acac) (80 nm)/Alq3(70 nm)/LiF(1 nm)/Al(200 nm)的红光器件,其中2T-NATA是4,4',4″-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine,NPB是N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine, Zn(BTZ)2是Bis-(2-(2-hydroxyphenyl) benzothiazole)zinc,Ir(DBQ)2(acac)是iridium complex,Alq3 是tris(8-hydroxyquinolato)aluminum。基于Ir(DBQ)2(acac) 掺杂的Zn(BTZ)2体系的器件给出最高电致发光(EL)性能。结果显示:10%Ir(DBQ)2-(acac) 掺杂Zn(BTZ)2器件的亮度和效率分别为25 000 cd/m2和12 cd/A,其相应的EL峰位于620 nm,色坐标(x=0.63,y=0.37)。由于未使用激子阻挡层,所以,比通常磷光器件的制作工艺简单并且操作过程容易控制。 相似文献
12.
13.
14.
15.
以CBP为主体的高色纯度红色磷光有机电致发光器件 总被引:3,自引:1,他引:3
以铱配合物红色磷光体Ir(piq)2(acac)为掺杂剂,制备了基于CBP材料的一系列红色电致磷光器件(PLED),其结构为ITO/CuPC(1nm)/Ir(piq)2(acac):CBP(25nm)/BCP(10nm)/Alq3(35nm)/LiF(1nm)/Al(100nm),对4种不同的掺杂剂浓度进行了比较,研究了它们的电致发光特性。得出了Ir(piq)2(acac)的最佳掺杂比为8%,此时器件的色坐标都非常接近标准红色,且色纯度超过了98%以上;在16V时,色坐标为(x=0.67,y=0.32),色纯度为99.74%,基本满足了全色显示对红色发光的要求。 相似文献
16.
17.
以蓝色发光材料DPVBi为基质的白色发光器件 总被引:5,自引:3,他引:5
白色有机发光器件是实现彩色平板显示的重要方案之一。利用蓝色发光材料DPVBi[4,4′—(2,2—苯乙烯基)—1,1′—联苯]掺杂红光染料DCJTB[4—氰甲烯基—2—叔丁基—6—(1,1,7,7—四甲基久洛尼定基—9—烯炔基—4H—吡喃)]作发光层制备了白色发光器件。研究了DPVBi掺杂不同浓度IDCJTB薄膜的光致发光性质,根据光致发光结果,制备了以DPVBi掺杂不同浓度DCJTB作发光层的电致发光器件,其结构为ITO/GuPc/NPB/DPVBi:DCJTB/Alq3/LiF/Al。当DCJTB质量分数为0.0008时,器件实现了白色发光(色度x=0.25,y=0.32),电致发光和光致发光的掺杂比例基本相符,表明器件的白色发光主要是由基质DPVBi向掺杂剂DCJTB的能量传递产生的。研究还发现:白色器件随电压升高,光谱中蓝色成分相对于红色成分的比例略有增加,文章对此现象进行了分析。该白光器件在14V时达到最高亮度7822cd/cm^2,在20mA/cm^2电流密度下的亮度为-489cd/cm^2,最大流明效率为1.75lm/W。 相似文献
18.
19.
相对于传统的无机半导体材料,有机半导体材料特别是有机电子传输材料的载流子浓度和迁移率较低,从而影响了有机发光器件的亮度、效率等性能.为了提高有机发光器件器件性能必须增强电子注入和传输能力,对有机电子传输材料进行n型电学掺杂能够有效地提高电子的注入和传输能力.本文利用Li3N作为n型掺杂剂,以掺杂层Alq3∶Li3N作为电子注入层,有效地提高了有机发光器件器件的性能,在掺杂浓度为5%,掺杂层厚度为10 nm时器件性能表现为最优.Li3N在空气中稳定,并且在较低的温度和压强下能分解产生Li原子和氮气,避免了采用金属掺杂剂如Li、Cs等材料时易受空气中水分和氧气影响的缺点,有利于工艺处理. 相似文献
20.
《发光学报》2017,(8)
制备了结构为ITO/MoO_3(30 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶R-4B(8%)(30 nm)/电子传输层(40 nm)/Li F(1 nm)/Al(150 nm)的器件,其中R-4B为红色磷光染料,电子传输层分别采用Alq_3、Bphen∶Alq_3(x%)和Bphen,对3种不同电子传输层器件的发光性能进行了研究。结果表明:Bphen∶Alq_3(x%)作为电子传输层的器件与Alq_3或Bphen作为电子传输层的器件相比,亮度提高了约3.5倍,电流效率提高了1.1~2.5倍,效率滚降变得平缓。采用Bphen∶Alq_3作为电子传输层,不仅减小了电子在LUMO能级传输时的跳跃传输距离,而且在一定程度上抑制了Bphen的结晶,使器件的电子传输能力和效率滚降性能得到改善。 相似文献