首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio molecular orbital and density functional theory were used to investigate energetic and structural properties of the various conformations of hexa-tertbutylbenzene (1), hexakis(trimethylsilyl)benzene (2), hexakis (trimethylgermyl)benzene (3), and hexakis(trimethylstannyl)benzene (4). HF/3-21G//HF/3-21G and B3LYP/3-21G//HF/3-21G results revealed that the Twist-Boat (TB) conformer of compound 1 is more stable than the 1-Chair (C), 1-Boat (B), and 1-Planar (P) conformers. B3LYP/3-21G//HF/3-21G results show that the 1- TB conformer is more stable than 1- C, 1- B, and 1- P conformers of about 1.13, 4.34, and 99.94 kcal mol?1 , respectively. Contrary to the stability order of compound 1 conformers, the C conformer of compounds 2–4 is more stable than TB, B, and P conformations, as calculated by B3LYP/3-21G//HF/3-21G and HF/3-21G//HF/3-21G levels of theory. The energy gap between the C and P conformers in compounds 1–4 is decreased in the following order: ΔE(4: C, P) < ΔE (3: C, P) < ΔE(2: C, P) < ΔE (1: C, P). This fact can be explained in terms of the increase of C aromatic -M (M═C, Si, Ge, and Sn) bond lengths and the decrease of steric (van der Waals) repulsions in the previously discussed compounds. For compounds 1–3, the calculations were also performed at the B3LYP/ 6-31G*//HF/3-21G level of theory. However, the comparison showed that the results at B3LYP/3-21G//HF/3-21G methods correlated well with those obtained at the B3LYP/6-31G*// HF/6-31G method. Further, NBO analysis revealed that in compounds 1–4, the resonance energy associated with the σM-C1 to σ*C2-C3 delocalization is 5.20, 9.68, 11.15, and 12.27 kcal mol?1, respectively. These resonance energy values could explain the easiness of the ring flipping processes of C, B, and TB conformers of compounds 4 to 1. Also, the NBO results showed that by an increase of the σM-C1 → σ *C2-C3 resonance energies in compounds 1–4, the σM-C1 bonding orbital occupancies decrease. This fact could fairly explain the increase of the Caryl-M bond length from compound 1 to 4. The NBO results are also in good agreement with the calculated energy barriers for the ring flipping of the chair conformations in compounds 1–4, as calculated by B3LYP and HF methods.  相似文献   

2.
Abstract

The decomposition of 2-chloroethyltrichlorosilane (1) to ethylene-tetrachlorosilane (2), hydrogen chloride-ethylenetrichlorosilane (3), and ethylenechloride-trichlorosilane (4) was investigated using ab initio Molecular Orbital (MO) and Density Functional Theory (DFT). Study on the HF/6-31G level of theory revealed that the required energy for the decomposition of compound 1 to 2, 3, and 4 is 59.86, 101.13, and 63.29 kcal mol?, respectively. MP2/6-31G*//HF/6-31G* calculated barrier height for the decomposition of compound 1 to 2, 3, and 4 is 60.59, 94.04, and 66.91 kcal mol?1, respectively. Also, B3LYP/6-31G*//HF/6-31G* results indicate that the barrier height for the decomposition of compound 1 to 2, 3, and 4 is 51.71, 85.38, and 53.74 kcal mol?1, respectively. Among the three methods, which have been used to calculate the barrier height of the decomposition of compound 1 to 2–4, B3LYP/6-31G**//HF/6-31G** is in good agreement with the reported experimental data. Contrary to the previously evaluated experimental values for the decomposition of compoun 1 to 3 and 4, all three methods predict a higher energy barrier for these reactions.  相似文献   

3.
Ab initio calculations at HF/6-31+G? level of theory for geometry optimization, and MP2/6-31+G?//HF/6-31+G? and B3LYP/6-31+G?//HF/6-31+G? levels for a single-point total energy calculation, are reported for the chair and twist conformations of 1,2-dithiane (1), 3,3,6,6-tetramethyl-1,2-dithiane (2), 1,2,4,5-tetrathiane (3), and 3,3,6,6-tetramethyl-1,2,4,5-tetrathiane (4). The C2 symmetric chair conformations of 1 and 2 are calculated to be 21.9 and 8.6 kJ mol?1 more stable than the corresponding twist forms. The calculated energy barriers for chair-to-twist processes in 1 and 2 are 56.3 and 72.8 kJ mol?1, respectively. The C2h symmetric chair conformation of 3 is 10.7 kJ mol?1 more stable than the twist form. Interconversion of these forms takes place via a C2 symmetric transition state, which is 67.5 kJ mol?1 less stable than 3-Chair. The D2 symmetric twist-boat conformation of 4 is calculated to be 4.0 kJ mol?1 more stable than the C2h symmetric chair form. The calculated strain energy for twist to chair process is 61.1 kJ mol?1.  相似文献   

4.

Ab initio Hartree–Fock calculations at the HF/6-31G* level of theory for geometry optimization and the MP2/6-31G*//HF/6-31G* and B3LYP/6-311G(2df,p)//HF/6-31G* levels for a single point total energy calculation are reported for the important energy-minimum conformations of 1,1-dioxo-thiane (2), 1,1-dioxo-1,2-dithiane (3), 1,1-dioxo-1,3-dithiane (4), 1,1-dioxo-1,4-dithiane (5), 1,1,2-trioxo-1,2-dithiane (6), 1,1,3-trioxo-1,3-dithiane (7), 1,1,4-trioxo-1,4-dithiane (8), 1,1,2,2-tetroxo-1,2-dithiane (9), 1,1,3,3-tetroxo-1,3-dithiane (10), and 1,1,4,4-tetroxo-1,4-dithiane (11). According to the MP2/6-31G*//HF/6-31G* calculations, compound 5 is more stable than 3 and 4 by 7.8 and 8.9 kJ mol?1, respectively. The axial geometries of 6 and 8 are more stable than the equatorial forms by 21.4 and 19.1 kJ mol?1, respectively, but the equatorial form of 7 is 4.1 kJ mol?1 more stable than the axial geometry. Compound 11 is more stable than 9 and 10 by 49.3 and 31.0 kJ mol?1, respectively.  相似文献   

5.

Ab initio Hartree–Fock calculations at the HF/6?31 G* level of theory for geometry optimization and the MP2/6?31 G*//HF/6?31 G* and B3LYP/6-311G(2df,p)//HF/6?31 G* levels for a single point total energy calculation are reported for the important energy-minimum conformations of 1-oxo-thiane (1), 1-oxo-1,2-dithiane (2), 1-oxo-1,3-dithiane (3), 1-oxo-1,4-dithiane (4), 1,2-dioxo-1,2-dithiane (5), 1,3-dioxo-1,3-dithiane (6), and 1,4-dioxo-1,4-dithiane (7). According to the MP2/6-31G*//HF/6-31G* calculations, while the axial conformations of compounds 1, 2, and 4 are more stable than the equatorial forms by 6.0, 20.0, and 9.9 kJ mol?1, respectively, the equatorial geometry of 3 is 3.0 kJ mol?1 more stable than the axial form. The diaxial conformations of 5 and 7 are calculated to have similar energies, but the diaxial form of 6 is about 43 kJ mol?1 less stable than that of 5 or 7.  相似文献   

6.
Geometry optimizations at the HF/3-21G(*) and HF/6-31G* levels of ab initio theory have been carried out for various isomers of model disubstituted phosphoranes PH3XY(X, Y?OH, CH3, NH2, and SH). Reasonable agreement was obtained between the optimized geometries and available crystal structure data for analogous compounds. The isomers were further characterized by frequency calculations. The MP2/6-31G*//6-31G* + ZPE energy data reveal that the interactions between the ligands are relatively small (0–4 kcal mol?1) for the most stable conformations of the isomers. Hence, for these conformations the apicophilicities (based upon monosubstituted phosphoranes) are approximately additive. The less stable PH3XY conformations are in general transition states or higher-order saddle points, and their interligand interactions are larger in magnitude (up to 10 kcal mol?1); the results with these conformations suggest that apicophilicities may not be as additive for some highly substituted phosphoranes. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Abstract

The ring opening of diphosphacyclopropane (1a), mono- (1b) and di-fluorodiphosphacyclopropane (1c) with methyllithium to give diphosphaallene is examined at the 3-21G(?) and 6-31G? Hartree-Fock level. In the first step, the diphosphacyclopropane opens to give the stable Li+/diphosphaallyl anion pair. The next step, formation of the phosphaallene, is endothermic unless an ionic salt (LiF) is produced, which can be further stabilized by solvent. The overall reaction energetics are 148.7 kJ Mol?1 for 1a, -169.7 kJ mol?1 for 1b, and - 137.8 kJ mol?1 for 1c. The calculated ring strain energy for 1a is 61.8 kJ mol?1.  相似文献   

8.
The mechanism and kinetics of the reaction of ortho-benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) calculations of the pertinent potential energy surface combined with Rice-Ramsperger-Kassel-Marcus - Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4H4 to one of the C atoms of the triple bond in ortho-benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six-membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1- or 2-naphthyl radicals. The o-C6H4+C4H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31–32 kcal mol−1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9–11 kcal mol−1. Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1- and 2-naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho-benzyne and vinylacetylene are available.  相似文献   

9.
The reaction of 1,8-bis(dimethylamino)naphthalene (“proton sponge”) with trifluoroacetic anhydride afforded new derivatives of naphtho[1,8-c,d]pyran,viz., trans-) (4) andcis-1,3-dihydroxy-6,7-bis(dimethylamino)-1,3-bis(trifluoromethyl)-1H,3H-naphthol[1,8-c,d]pyran (5) and symmetrical 3,4,10,11-tetrakis(dimethylamino)-7,14-bis(trifluoromethyl)-7,14-epoxydinaphtho[1,8-a,b;1′, 8′-ef]cyclooctane (3), which belongs to a new type of double “proton sponges,” along with the expected 1,8-bis(dimethylamino)-4-trifluoroacetylnaphthalene. The structures of compounds3 and4 were established by spectral studies and X-ray diffraction analysis.  相似文献   

10.
A method of one-step C-C coupling of 1,5-bis(2,6-dimethylphenoxy)-3-oxapentane (1a) and 1,8-bis(2,6-dimethylphenoxy)-3,6-dioxaoctane (1b) with 3-methylthio- (2) and 3-amino-1,2,4-triazine (3) and 3-aryl-1,2,4-triazin-5-one (6-8) has been described. The reaction of compounds 1a,b with compounds 2 and 3 in the presence of trifluoroacetic acid results in the addition of the dimethylphenoxy group to the unsubstituted C(5) carbon atom of the triazine ring. The reactions of triazinones 6-8 with compounds 1a,b in a mixture of trifluoroacetic acid and organic anhydrides are accompanied by the acylation of the nitrogen atom adjacent to the reaction center and affords bis[(3-R-1-acyl-5-oxo-1,4,5,6-tetrahydro-1,2,4-triazin-6-yl)-2,6-dimethylphenoxy]-3-oxapentane or -3,6-dioxaoctane. The obtained adducts can smoothly be oxidized under mild conditions to form more stable products of nucleophilic hydrogen substitution in the triazine ring. The extraction and transport of Ca2+ and Mg2+ cations through an organic membrane by the compounds synthesized are discussed.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2210–2215, October, 2004.  相似文献   

11.
A series of 1,8-naphthalenedicarboximide derivatives containing substituents of different steric and electronic nature were studied by X-ray diffraction analysis.Ab initio quantumchemical calculations in the HF/3–21G approximation demonstrated the high conformational flexibility of the imide tetrahydro ring in the molecules of these compounds. The electronic nature of the substituents has no effect on the geometry and conformational flexibility of naphthalenedicarboximides due to weak conjugation between the imide and naphthalene fragments in the molecules. However, the steric effects of the bulky substituents noticeably affect the equilibrium geometry of the imide ring by increasing its conformational flexibility. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 68–73, January, 2000.  相似文献   

12.
A series of 1,8-naphthalenedicarboximide derivatives containing substituents of different steric and electronic nature were studied by X-ray diffraction analysis.Ab initio quantumchemical calculations in the HF/3–21G approximation demonstrated the high conformational flexibility of the imide tetrahydro ring in the molecules of these compounds. The electronic nature of the substituents has no effect on the geometry and conformational flexibility of naphthalenedicarboximides due to weak conjugation between the imide and naphthalene fragments in the molecules. However, the steric effects of the bulky substituents noticeably affect the equilibrium geometry of the imide ring by increasing its conformational flexibility. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 68–73, January, 2000.  相似文献   

13.
A new series of 1,8-bis(4-((5-phenyl-1,3,4-oxadiazol-2-yl) methoxy)-substituted aryl) naphthalene-1,8-dicarboxamide derivatives (6a–j) were synthesized in the presence of POCl3 and obtained good yields. All the synthesized novel compounds were characterized by IR, 1H NMR, 13C NMR, HRMS spectroscopic data and elemental analysis. All the synthesized compounds evaluated for their antibacterial and antifungal activities. The antibacterial activity screened against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli and used standard reference drug ciprofloxacin. The antifungal activity screened against two pathogenic fungal strains Aspergillus niger and Candida albicans used a reference standard drug Voriconazole. All these compounds (6a–j) demonstrate good antibacterial and antifungal activity. Among them, compounds 6h and 6c show highest antibacterial and antifungal activity.  相似文献   

14.
NBO analysis and hybrid density functional theory–based method (B3LYP/6-311+G**) was used to study the anomeric effects (AE), dipole–dipole interactions, and steric repulsion effects on the conformational properties of 2,3,5,6-tetrahalo-1,4-dioxane [halo = F (1), Cl (2), Br (3)], 2,3,5,6-tetrahalo-1,4-dithiane [halo = F (4), Cl (5), Br (6)], and 2,3,5,6-etrahalo-1,4-diselenane [halo = F (7), Cl (8), Br (9)]. B3LYP/6-311+G** results revealed a strong axial preference in compounds 13. Gibbs free energy difference (G eqG ax) values (e.g., ΔG eq-ax) between the axial and equatorial conformations of compound 1 to compound 3 are 8.19, 3.86, and 3.13 kcal mol?1, respectively, as calculated by the B3LYP/6-311+G** level of theory. On the other hand, the NBO analysis of donor–acceptor (bond–antibond) interactions revealed that the AE for compounds 1–3 are ?12.26, ?16.46, and ?18.11 kcal mol?1, respectively. Contrary to the increase of the AE values from compound 1 to compound 3, the increase of the steric repulsions (e.g., 1,3-syn-axial repulsions) could fairly explain the decrease of the axial conformation stability in compounds 13 compared to their equatorial conformations. Further, the correlations between the AE, structural parameters, and conformational behavior of compounds 4–9 have been investigated.  相似文献   

15.
An investigation employing the ab initio molecular orbital (MO) and density functional theory (DFT) methods to calculate structural optimization and conformational interconversion pathways for the two diastereoisomeric forms, (±) and meso configurations of 1,3,7,9-tetraphospha-cyclododeca-1,2,7,8-tetraene (1) was undertaken. Two axial symmetrical conformations are found for (±)-1 configuration. (±)-1-TB axial symmetrical form is found to be about 0.35 and 0.99 kcal mol?1 more stable than (±)-1-Crown axial symmetrical conformation, as calculated by HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* levels of theory, respectively. The unsymmetrical meso-1-TBCC form is found to be the most stable geometry, among the various conformations of meso-1 configuration. HF/6-31G*//HF/6-31G* and B3LYP/6-31G*//HF/6-31G* results showed that between the two most stable conformations of (±) and meso configurations, (±)-1-TB is more stable than meso-1-TBCC by about 3.35 and 2.43 kcal mol?1, respectively. In addition, MP2/6-31G* and B3LYP/6-311+G** results showed that the (±)-1-TB form is about 1.10 and 2.36 kcal mol?1 more stable than the meso-1-TBCC form. Further, NBO results revealed that in the most stable form of meso configuration (meso-1-TBCC), the sum of the π* allenic antibonding orbital occupancies (Σ π *occupancy) is greater than dl configuration ((±)-1-TB). Also, NBO results indicated that in the (±)-1-TB conformer, the sum of σ and π allenic moieties bonding orbital deviations (Σ σ dev+Σ π dev) from their normal values, is lower than in the meso-1-TBCC form.  相似文献   

16.
A straightforward and highly efficient series of new substituted 3-aryl-1,8-naphthyridine derivatives 3a–e, 4a–e, and 6a–e were synthesized. Condensation dissimilar quantities of 2-chloro-3-aryl-1,8-naphthyridine 1a–e with benzene-1,4-diamine 2 and sodium ethoxide refluxing in ethanol solvent yielded the compounds 3a–e and 4a–e. The 2-(4-((3-aryl-1,8-naphthyridin-2-yl)amino)phenyl)isoindoline-1,3-diones 6a–e were obtained by treatment of compounds 3a–e with phthalic anhydride 5 in refluxing N,N-dimethylformamide is described. All synthesized compounds evaluated for their antimicrobial activity. The structures of the compounds have been proven on the established of spectral (IR, 1H NMR, and 13C NMR) data and elemental analyses. The reaction will be characterized by good efficacy, easy workup, simple purification of the products, and availability of catalyst.  相似文献   

17.
The energies of protonation and Na+ cationization of glycine (GLY) and its (GLY ? H + Na) salt in the gas phase were calculated using ab inltio calculations. The proton affinity of GLY, valued at the MP2/6–31G*//3-21G level, is 937 kJ mol?1. The amino function is confirmed to be the most favourable site of protonation: ‘proton affinities’ of the carbonyl and hydroxyl functions are calculated to be 75 and 180 kJ mol?1, respectively, lower than that of NH2 at the MP2/6-31G*//3–21G level. Calculations performed up to the MP2/6–31G*//3–21G level give the Na+ affinity of GLY as 189 kJ mol?1 and the H+ and Na+ affinities of (GLY – H + Na) as 1079 and 298 kJ mol?1, respectively. The geometries of all neutral and protonated species optimized with the 3–21G basis set are described. Both H* and Na+ cations complex preferably between the nitrogen atom and the carbonyl oxygen atom, leading to pseudo-five-membered ring structures in which Na? O and Na? N bonds lengths are greater than 2 Å.  相似文献   

18.
Reactions of a number of germylenes and dimethylsilylene with a phosphaalkene, 2,2-bis(trimethylsilyl)-1-phenyl-1-phosphaethene (1), were studied. The reaction of short-lived dimethylgermylene with 1 produced a phosphagermirane 3 (the first representative of a new class of heterocyclic compounds). Compound 3 was characterized in solution by 1H, 13C, 31P, and 29Si NMR spectroscopy. Subsequent reaction of 3 with dimethylgermylene results in 2,2,3,3-tetramethyl-4,4-bis(trimethylsilyl)-1-phenyl-2,3-digerma-1-phosphacyclobutane 4, which has not been reported so far. In order to rationalize different reactivities of germylenes towards alkenes and phosphaalkenes, the addition products of GeH2 to ethylene and phosphaethene (HP=CH2) were studied using the G2 computational scheme and DFT PBE technique. The adducts of GeMe2 (GeCl2) with HP=CH2 and of GeMe2 with PhP=C(SiH3)2 were also calculated by the DFT PBE method. According to calculations, the exothermicity, DE, of cycloaddition of GeH2 and GeMe2 to the phosphaalkenes HP=CH2 and PhP=C(SiH3)2 (43.5—39.7 kcal mol–1) is nearly twice as high as the exothermicity of cycloaddition of these germylenes to ethylene. In addition to the minimum corresponding to the three-membered cycle, a number of minima corresponding to quite stable donor-acceptor complexes in which the Ge atom is coordinated by the lone electron pair of the P atom in the phosphaalkene molecule were located on the potential energy surface of the germylene—phosphaalkene system. The complexation energy of the complex of GeH2 (GeMe2) with phosphaethene is 25.0 (16.9) kcal mol–1. For GeCl2, the exothermicity of cycloaddition to HP=CH2 decreases to 7.6 kcal mol–1 and the complexation energy decreases to 8.2 kcal mol–1.  相似文献   

19.
Abstract

The nature of the transition state structures of the decomposition of 3-pyrroline (1), 2,5-dihydrofuran (2) and 2,5-dihydrothiophene (3) were investigated usingab initio Molecular Orbital (MO) and Density Factional Theory (DFT) methods. The energy barrierof the decomposition of compound 1 is smaller than compound 2 and compound 2 is smaller than compound 3. The energy barriers for the decomposition of compounds 1–3 are 46.20, 50.17, and 61.34 kcal mol?1, respectively, which is calculated by B3LYP/6-31G*//HF/6-31G* level of theory. Which is ingood agreement with reported experimental data. Contrary to the previously reported data, the distance between the cis-2-and-5-hydrogen atoms in compound 1 is greater than compound 2. The transition-state structures of the decomposition of compounds 1–3 are formed by interaction of the cis-2-and-5-hydrogen atoms. Also, the rings of compounds 1–3 in the transition state structures are puckered.  相似文献   

20.
Activation parameters were determined for the dynamics of radicals formed by muonium addition to glycylglycine (GlyGly; H3N+CH2CONHCH2CO2?) and the doubly protected alanylalanine derivative [Boc‐AlaAla‐Bz; ButOCONHCH(Me)CONHCH(Me)CO—O—CH2Ph]. GlyGly forms an adduct by muonium addition to the amide carbonyl group which isomerizes by flipping the muon between opposite sides of the molecule, requiring an activation energy of 20.4 kJ mol?1. In Boc‐AlaAla‐Bz, muonium addition to the benzene ring of the benzyl (—CH2Ph) group occurs, exhibiting an activation energy of 9.4 kJ mol?1, believed to be from torsion about the C—Ph bond. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号