首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluoroquinolones, 7-benzoxazol-2-yl-1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid and 7-benzothiazol-2-yl-1-ethyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid, were synthesized. The compounds were obtained by use of the Gould-Jacobs route to the quinoline ring system. The required anilines, 3-benzoxazol-2-yl-4-fluorophenylamine and 3-benzothiazol-2-yl-4-fluorophenylamine were obtained by the cyclodehydration reaction of 5-amino-2-fluorobenzoic acid with 2-aminophenol or 2-aminothiophenol respectively using polyphosphoric acid.  相似文献   

2.
As a part of metabolic studies of mosapride ( 1 ), a potential gastroprokinetic agent, the synthesis of 4-chloro-7-ethoxy-2(3H)-benzoxazolone-6-carboxylic acid ( 7 ) as a derivative of 4-amino-5-chloro-2-ethoxy-3-hydroxybenzoic acid ( 6 ), which has served a benzoic acid part of the metabolites 4 and 5 , is described. Treatment of methyl 3-amino-4-substituted amino-5-chloro-2-ethoxybenzoate derivatives 11a-c with sodium nitrate in acidic medium gave the benzotriazole derivatives 13x,y instead of the objective 3-hydroxy counterpart. The synthesis of 7 started from o-vanillin acetate ( 15 ) and proceeded through the intermediates 2-hydroxy-3-methoxy-4-nitrobenzaldehyde ( 18 ), methyl 4-amino-2,3-dihydroxybenzoate ( 23 ), and methyl 7-hydroxy-2(3H)-benzoxazolone-6-carboxylate ( 30 ). Compound 30 was alternatively prepared from 23 via methyl 4-ethoxycarbonylamino-2-ethoxycarbonyloxy-3-hydroxybenzoate ( 29 ), which is the product resulting from the migration of the ethoxycarbonyl group of methyl 4-amino-2,3-diethoxycar-bonyloxybenzoate ( 27 ).  相似文献   

3.
Fluorescent 7-amino-2,1-benzothiazines were prepared in high yields using the palladium-catalyzed reaction of 4-amino-2-chlorobenzaldehydes with a sulfoximine or the reaction of 7-fluoro-2,1-benzothiazines with amines.  相似文献   

4.
The synthesis of the novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine ring system and some of its derivatives has been accomplished such as 4-amino-1-phenyl-5,8-dioxo-, 4-amino-5,8-dioxo-, 1-phenyl-5,8-dioxo-, 5,8-dioxo-, 5,8-dichloro-1-phenyl-, 5-ethoxy-1-phenyl- and 8-ethoxy-1-phenylpyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrid-azines.  相似文献   

5.
Although 6-methyl- ( 1 ) and 6-phenylisoxanthopterin ( 2 ) have previously been synthesized, the requirement of high purity necessary for immunological testing has necessitated our development of the first reported synthesis of these compounds by unequivocal methods. In the process of so doing four new pyrazines, ethyl 3-amino-5-chloro-6-methyl-2-pyrazinecarboxylate ( 11 ), N,N-dimethyl-N'-(6-chloro-3-cyano-5-phenylpyrazin-2-yl)methanimidamide ( 16 ), 2-amino-3-ethoxycarbonyl-5-phenylpyrazine 1-oxide ( 19 ), and ethyl 3-amino-5-chloro-6-phenyl-2-pyrazinecarboxylate ( 20 ) were synthesized. Four new pteridines, 7-methoxy-6-methyl-2,4-pteridinediamine ( 7 ), 7-methoxy-6-phenyl-2,4-pteridinediamine ( 17 ), 2-amino-7-ethoxy-6-methyl-4(3H)-pteridinone ( 12 ), and 2-amino-7-ethoxy-6-phenyl-4(3H)-pteridinone ( 21 ) have also been synthesized enroute to these isoxanthopterins.  相似文献   

6.
Syntheses of Sulfonated Derivatives of 4-Fluoroaniline Synthesis of 2-amino-5-fluorobenzenesulfonic acid ( 2 ) was achieved by baking the hydrogen sulfate of 4-fluoroaniline ( 1 ). Sulfonation of p-fluoroacetanilide ( 4 ) with oleum followed by hydrolysis gave 5-amino-2-fluorobenzenesulfonic acid ( 3 ). The same reaction with 1 yielded 3 in an impure state. The structures of 2 and 3 were confirmed by converting the diazonium chlorides derived from 5-fluoro-2-nitroaniline ( 5 ) and from 2-fluofo-5-nitroaniline ( 8 ) to 5-fluoro-2-nitrobenzene-sulfonyl chloride ( 6 ) and 2-fluoro-5-nitrobenzenesulfonyl chloride ( 9 ), respectively, followed by hydrolysis of 6 to 5-fluoro-2-nitrobenzenesulfonic acid ( 7 ), and of 9 to 2-fluoro-5-nitrobenzenesulfonic acid ( 10 ), and by final reduction. Compound 10 was also obtained by sulfonation of 1-fluoro-4-nitrobenzene ( 11 ) with oleum.  相似文献   

7.
Acetylation of 2′-deoxy-5-fluoro-2′-trifluoroacetamidouridine with acetic anhydride in pyridine, followed by treatment with phosphorus pentasulfide in refluxing dioxane afforded 3′,5′-di-O-acetyl-2′-deoxy-5-fluoro-2′-trifluorothioacetamido-4-thiouridine ( 3 ). Treatment of 3 with methanolic sodium methoxide furnished 2′-deoxy-2′-trifluorothioacetamido-4-thiouridine ( 4 ), whereas its treatment with methanolic ammonia gave 2′-amino-2′-deoxy-5-fluorocytidine ( 5 ). An alternative approach for the preparation of this compound proceeding from 2′-trifluoroacetamidocytidine was unsuccessful, since the use of acetic anhydride in pyridine led to the replacement of the trifluoroacetyl function by an acetyl group, yielding an intermediate unsuitable for obtaining the target compound. The title compound was inactive at 1 × 10?4 M concentration against HeLa and leukemia L1210 cells in vitro, but inhibited the in vitro growth of E. coli cells at a concentration of 1 × 10?7 M. It was also found to be a substrate for CR/dCR deaminase partially purified from human liver, with a Km of 128 μM.  相似文献   

8.
A series of 7-amino-1-cyclopropyl-1,4-dihydro-8-fluoro-4-oxo-1,6-naphthyridine-3-carboxylic acids has been prepared and evaluated for antibacterial activity. These compounds were prepared by the displacement of the chloro substituent from 7-chloro-1-cyclopropyl-1,4-dihydro-8-fluoro-4-oxo-1,6-naphthyridine-3-carboxylic acid employing the requisite nitrogen nucleophile to produce the title compounds. The naphthyridine acid was synthesized in ten steps from ethyl 2,4-dihydroxy-3-nitro-5-pyridinecarboxylate. The key step in the sequence was a Schiemann reaction carried out using the hexafluorophosphate salt of the diazonium ion derived from ethyl 3-amino-2,4-dichloro-5-pyridinecarboxylate.  相似文献   

9.
Ready, convenient synthesis for 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-1,2,3,-4-tetrahydropyrido-[3′,2′:,4,5]thieno[3,2-d]pyrimidines 5 , 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-3,4-dihydropyrido[3′,2-: 4,5]thieno[3,2-d]pyrimidines 6 , 4-chloro-8-cyano-7-ethoxy-9-phenyl-2-substitutedpyrido[3′,2′:4,5]thieno[3,2-4 -pyrimidines 7 and 8-cyano-7-ethoxy-2-(2′-nitrophenyl)-9-phenyl-4-substitutedpyrido[3′,2′:4,5]thieno[3,2- d ]pyrimidines 8-18 from 2-chloro-3,5-dicyano-6-ethoxy-4-phenylpyridine 1 via 3,5-dicyano-6-ethoxy-2-mercapto-4-phenylpyridine 2 and aminocarboxamide 4 are reported. In addition, the reaction of hydrazino derivative 12 with reagents such as formic acid and triethyl orthoformate yielded the fused tetraheterocyclic 8-cyano-9- ethoxy-5-(2′-nitrophenyl)- 7-phenylpyrido[3′,2′:4,5]thieno[2,3-e]-1, 2,4-triazolo[4,3-c]pyrimidine system 19 .  相似文献   

10.
11.
Treatment of 2-amino-3,6-dinitro-1,8-naphthyridines with liquid ammonia/potassium permanganate gives 2,4-diamino-3,6-dinitro-1,8-naphthyridine. From 2-ethoxy-3,6-dinitro-1,8-naphthyridine a mixture of 4-amino-and 5-amino-3,6-dinitro-1,8-naphthyridine was obtained. 2-Chloro-3,6-dinitro-1,8-naphthyridine afforded a mixture of four compounds i. e. 2,4- and 2,5-diamino-3,6-dinitro-1,8-naphthyridine and 2-chloro-5-amino-3,6-dinitro-1,8-naphthyridine and 2-amino-3,6-dinitro-1,8-naphthyridine. A study on covalent amination has shown that 4-amino-2-ethoxy-3,6-dinitro-1,8-naphthyridine undergoes covalent amination at C-5, whereupon in this adduct amino-deethoxylation takes place. In a similar way, 2-chloro- and 2-ethoxy-5-amino-3,6-dinitro-1,8-naphthyridine give covalent amination at C-4.  相似文献   

12.
4-Amino-5-fluoro-2-pyridone ( 4 ) [5-fluoro-3-deazacytosine] was isolated as the hydrochloride salt from the dealkylation of 4-amino-5-fluoro-2-methoxypyridine ( 2 ), which was obtained from the reduction of 5-fluoro-2-methoxy-4-nitropyridine-N-oxide ( 1 ). Acetylation of 2 gave 4-acetamido-5-fluoro-2-methoxypyridine ( 3 ), which was condensed with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide to give the blocked nucleoside ( 8 ). Removal of the protecting groups gave 5-fluoro-3-deazacytidine. Fusion of the trimethylsilyl derivative of 4 (10), with 2-deoxy-3,5-di-O-p-toluoyl-D-erythro pentofuranosyl chloride gave a mixture of the β and α-anomers 12 and 13 , which were separated and deblocked to yield 5-fluoro-2′-deoxy-3-deazacytidine ( 14 ) and its α-anomer ( 15 ). Several alkylated and acetylated derivatives of 2 were prepared as model compounds for use in the proof of structure.  相似文献   

13.
Syntheses of Sulfonated Derivatives of 2-Fluoroaniline Synthesis of 4-amino-3-fluorobenzenesulfonic acid ( 3 ) was achieved in two ways: reaction of 2-fluoroaniline ( 1 ) with amidosulfonic acid and by first conventionally converting 4-nitro-3-fluoroaniline ( 8 ) to 4-nitro-3-fluorobenzenesulfonyl chloride ( 9 ) followed subsequently by hydrolysis to 3-fluoro-4-nitrobenzenesulfonic acid ( 10 ) and reduction. Hydrogenolysis of 3 gave sulfanilic acid ( 7 ). Both, sulfonation of fluorobenzene ( 6 ) to 4-fluorobenzenesulfonic acid ( 11 ) followed by nitration and sulfonation of 1-fluoro-2-nitrobenzene ( 12 ) led to 4-fluoro-3-nitrobenzenesulfonic acid ( 13 ). Reduction of 13 gave the isomeric 3-amino-4-fluorobenzenesulfonic acid ( 4 ), which was also obtained both by sulfonation of 1 and by sulfonation of o-fluoroacetanilide ( 14 ) followed by hydrolysis. Selective hydrogenolyses of 2-amino-5-bromo-3-fluorobenzenesulfonic acid ( 15 ), prepared by reaction of 4-bromo-2-fluoroaniline ( 16 ) with amidosulfonic acid, and of 4-amino-2-bromo-5-fluorobenzenesulfonic acid ( 20 ), obtained by sulfonation of 5-bromo-2-fluoroaniline ( 19 ) yielded the isomers 2-amino-3-fluorobenzenesulfonic acid ( 5 ) and 3 , respectively. The fourth isomer, 3-amino-2-fluorobenzenesulfonic acid ( 2 ), was synthesized by sulfur dioxide treatment of the diazonium chloride derived from 2-fluoro-3-nitroaniline ( 21 ) to 2-fluoro-3-nitrobenzenesulfonyl chloride ( 22 ), followed by hydrolysis to 2-fluoro-3-nitrobenzenesulfonic acid ( 23 ) and final Béchamp-reduction.  相似文献   

14.
The mass spectral fragmentation patterns of 6-methoxy-, 6-ethoxy- and 6-propoxy-2,2 ′-bipyridyls are reported. The base peaks in the spectra of both the 6-methoxy and 6-ethoxy compounds are due to the M-lion of 6-methoxy-2,2′-bipyridyl, while the base peak with 6-propoxy-2,2- bipyridyl is due to a species formed by loss of C3H6 from the molecular ion.  相似文献   

15.
The synthesis of ten new substituted 1,3,4-thiadiazolyl-4(3H)-quinazolinones 8–11, 13, 17 , and 20–23 is reported. Compounds 8–11 were prepared by condensation of 5-fluoro-2-methyl-3,1-benzoxazin-4-one (3) and 5-substituted 2-amino-1,3,4-thiadiazoles 4–7. Compound 13 was obtained by condensation of 5-fluoro-2-methyl-3,1-benzoxazin-4-one (3) with DL-α-amino-?-caprolactam (12) . Compound 17 was synthesized by condensation of 6-bromo-2-methyl-3,1-benzoxazin-4-one (16) and 2-amino-5-t-butyl-1,3,4-thiadiazole (5) . Compounds 20–23 were obtained by condensation of 5-chloro-6,8-dibromo-2-methyl-3,1-benzoxazin-4-one (19) and 5-substituted 2-amino-1,3,4-thiadiazoles 4–7, respectively. The substituted 3,1-benzoxazin-4-ones 3, 16, and 19 were obtained in good yield by refluxing the appropriate anthranilic acid, 1,15 , and 18 with acetic anhydride (2) .  相似文献   

16.
The regiospecific reaction of 5-vinyl-3′,5′-di-O-acetyl-2′-deoxyuridine ( 2 ) with HOX (X = Cl, Br, I) yielded the corresponding 5-(1-hydroxy-2-haloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines 3a-c . Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with DAST (Et2NSF3) in methylene chloride at -40° gave the respective 5-(1-fluoro-2-chloroethyl)- ( 6a , 74%) and 5-(1-fluoro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6b , 65%). In contrast, 5-(1-fluoro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6e ) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5-(1-methoxy-2-iodoethyl)- ( 6c ), 5-(1-ethoxy-2-iodoethyl)- ( 6d ) and 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with thionyl chloride yielded the respective 5-(1,2-dichloroethyl)- ( 6f , 85%) and 5-(1-chloro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6g , 50%), whereas a similar reaction employing the 5-(1-hydroxy-2-iodoethyl)- compound 3c afforded 5-(1-methoxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6c ), possibly via the unstable 5-(1-chloro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine intermediate 6h . The 5-(1-bromo-2-chloroethyl)- ( 6i ) and 5-(1,2-dibromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6j ) could not be isolated due to their facile conversion to the corresponding 5-(1-ethoxy-2-chloroethyl)- ( 6k ) and 5-(1-ethoxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 61 ). Reaction of 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with methanolic ammonia, to remove the 3′,5′-di-O-acetyl groups, gave 2,3-dihydro-3-hydroxy-5-(2′-deoxy-β-D-ribofuranosyl)-furano[2,3-d]pyrimidine-6(5H)-one ( 8 ). In contrast, a similar reaction of 5-(1-fluoro-2-chloroethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6a ) yielded (E)-5-(2-chlorovinyl)-2′-deoxyuridine ( 1b , 23%) and 5-(2′-deoxy-β-D-ribofuranosyl)furano[2,3-d]pyrimidin-6(5H)-one ( 9 , 13%). The mechanisms of the substitution and elimination reactions observed for these 5-(1,2-dihaloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines are described.  相似文献   

17.
[5+2] Cycloaddition followed by asymmetric dihydroxylation procedure have been utilized to prepare novel cyclitols. Accordingly, rac-2α-hydroxy-6α-ethoxy-1,5-anhydro cyclohept-3-ene, 10 derived from [5+2] cycloaddition of 3-oxidopyrylium ylide and vinyl ether has been recognized as a seven-membered carbasugar equivalent and elaborated to 1,4,5-tribenzoyloxy-2-ethoxy cycloheptanes through a flexible, regio- and stereoselective strategy involving Sharpless asymmetric dihydroxylation conditions to resolve the compounds obtained. The structures and relative configurations of newly synthesized (+)-2α-acetoxy-6α-ethoxy-3β,4β-dihydroxy-1,5-anhydro cycloheptane ((+)-12)); (−)-1β,4β,5β-tribenzoyloxy-6α-ethoxy cycloheptane ((−)-17) and (+)-1α,4α,5α-tribenzoyloxy-6β-ethoxy cycloheptane ((+)-17) are unambiguously established by single crystal X-ray analysis and duly supported by 1H and 13C NMR spectroscopy data.  相似文献   

18.
Syntheses were developed for 4-aryl-6-ethoxy-2-R-furo[2,3-b]pyridine-5-carbonitriles and ethyl esters of 5-amino-4-aryl-7-methyl-2-R-1,9-dioxa-8-azacyclopenta[b]naphthalene-6-carboxylic acids based on the reaction of 6-amino-4-aryl-2-R-4H-furo[2,3-b]pyran-5-carbonitriles with ethyl acetoacetate and nucleophilic recyclization. The mechanisms of these reactions are considered.  相似文献   

19.
Versatile 2-thioxopyrimidine-type building blocks ethyl 3-(2-ethoxy-2-oxoethyl)- 4 -oxo-2-thioxo-1,2,3,4,5,6,7,8-octahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7-carboxylate ( 4 ) and ethyl 4-oxo-2-thioxo-1,2,3,4,5,6,7,8-octahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidine-7-carboxylate ( 8 ) were synthesized from diethyl 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3,6-dicarboxylate ( 1 ). Derivatives of linear and angular heterocyclic systems having the imidazole and 1,2,4-triazole ring were obtained from the key intermediates 4 and 8 , respectively.  相似文献   

20.
5-(phenylselenenyl)- and 5-(phenylsulfenyl)-4-ethoxy-1-phenyl-2,4-pentadien-1-ones (2) and (3) underwent [4+2] cycloaddition with N-methyl and N-phenylmaleimides and successive isomerization to give the 7-benzoyl-3a,4,5,7a-tetrahydro-1H-isoindole-1,3(2H)-diones 5, 8 and 9 in good yields. The 4-ethoxy group on the 2,4-pentadien-1-one was found to be effective to facilitate the cycloaddition with dienophiles. We also performed other [4+2] cycloadditions of 2,4-pentadien-1-ones with DMAD or naphthoquinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号