首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical solution of the entrance flow in a tube has been obtained for a Bingham fluid. The numerical procedure used is that of Patankar and Spalding [1]. The accuracy of the numerical results is demonstrated by comparing the fully-developed velocity profiles with analytical exact solutions. The results of the entrance flow in a tube for the case of a zero yield stress are compared with the entrance flow solution for a Newtonian fluid. Detailed results are presented for a wide range of yield numbers (=τ y D/ūμ).  相似文献   

2.
The problem of equalizing the two dimensional flow of an incompressible fluid through a plane lattice of radial plates has been solved approximately by Mitrokhin [1]. In the following we present an approximate solution of the same problem for a cascade of thin curved blades which have a radial direction at the entrance. The bases of the proposed solution are the same assumptions as used in [1]. The formulas of Mitrokhin for the cascade of radial plates are a particular case which derives from the formulas obtained for the flow equalization radius and energy losses associated with separated flow.  相似文献   

3.
A study is made in the quasione-dimensional inertialess approximation of the axisymmetric flow of a Newtonian fluid in a tube of finite length made of a nonlinear active material with the capability of reducing deformations in response to an increase in tensile stresses [1, 2]. A study is made of the influence of the frequency and amplitude of forced oscillations of pressure at the entrance of the tube on its flow rate characteristics and on the behavior of the tube, depending on its length and certain rheological parameters. The first attempts at a study within the framework of this model of flow for unsteady conditions at the ends of the tube and in the ambient medium are described in [3, 4]. A general solution of this problem for external periodic disturbances of low amplitude is constructed in [5]. The present study gives an analysis of certain results of the numerical solution of an analogous problem for a wide range of variations in the frequency and amplitude of the pressure oscillations at the entrance to the tube.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 88–90, March–April, 1985.  相似文献   

4.
The problem of plane steady ideal heavy fluid flow bounded by an impermeable polygonal section, a curvilinear arc section, and a finite section of free surface is investigated in an exact nonlinear formulation. Hydrodynamic singularities may exist in the stream. A large class of captation problems of jet theory reduces to studying this kind of flow. The unique solvability of the problem under investigation is proved for sufficiently large Froude numbers and small arc curvature. A method of solution is given and an example is computed. Such problems have been solved earlier by numerical methods [1–3]. Some problems about jet flows of a gravity fluid with polygonal solid boundaries have been investigated by an analogous method in [4, 5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 140–143, May–June, 1975.  相似文献   

5.
Much research has been devoted to unsteady fluid flow with a free boundary. For example, Ovsyannikov [1] and Nalimov [2] have proven theorems on the existence and uniqueness of a solution, and a number of papers have proposed algorithms for numerical solution, based on various chain methods [3–6] or potential-theory methods [7–9]. In the present article we consider two-dimensional potential waves of finite amplitude on the interface between two heavy fluids of different densities. The initial problem is reduced to the Cauchy problem for a system of two integrodifferential equations. An algorithm for the numerical solution of this system is constructed, and the results of calculations are presented.  相似文献   

6.
The steady rotation of a disk of infinite radius in a conducting incompressible fluid in the presence of an axial magnetic field leads to the formation on the disk of a three-dimensional axisymmetric boundary layer in which all quantities, in view of the symmetry, depend only on two coordinates. Since the characteristic dimension is missing in this problem, the problem is self-similar and, consequently, reduces to the solution of ordinary differential equations.Several studies have been made of the steady rotation of a disk in an isotropically conductive fluid. In [1] a study was made of the asymptotic behavior of the solution at a large distance from the disk. In [2] the problem is linearized under the assumption of small Alfven numbers, and the solution is constructed with the aid of the method of integral relations. In the case of small magnetic Reynolds numbers the problem has been solved by numerical methods [3,4]. In [5] the method of integral relations was used to study translational flow past a disk. The rotation of a weakly conductive fluid above a fixed base was studied in [6,7], The effect of conductivity anisotropy on a flow of a similar sort was studied approximately in [8], In the following we present a numerical solution of the boundary-layer problem on a disk with account for the Hall effect.  相似文献   

7.
Viscous heat-conducting compressible fluid flow in an annular duct formed by two coaxial cylinders with large injection at the walls is investigated. An asymptotic solution exhibiting the influence of the axial symmetry of the duct is obtained in the vicinity of the y axis and is compared with the results of exact numerical calculations. Asymptotic solutions of the Navier-Stokes equations have been obtained earlier for flows in a plane channel with various rates of wall injection in the case of an incompressible gas [1, 2] and a compressible gas [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 135–139, May–June, 1976.  相似文献   

8.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

9.
The problem of the vibrations of a body in a bounded volume of viscous fluid has been studied on a number of occasions [1–4]. The main attention has been devoted to determining the hydrodynamic characteristics of elements in the form of rods. Analytic solution of the problem is possible only in the simplest cases [2]. In the present paper, in which large Reynolds numbers are considered, the asymptotic method of Vishik and Lyusternik [5] and Chernous' ko [6] is used to consider the general problem of translational vibrations of an axisymmetric body in an axisymmetric volume of fluid. Equations of motion of the body and expressions for the coefficients due to the viscosity of the fluid are obtained. It is shown that in the first approximation these coefficients differ only by a constant factor and are completely determined if the solution to the problem for an ideal fluid is known. Examples are given of the determination of the “viscous” added mass and the damping coefficient for some bodies and cavities. In the case of an ideal fluid, general estimates are obtained for the added mass and also for the influence of nonlinearity. Ritz's method is used to solve the problem of longitudinal vibrations of an ellipsoid of revolution in a circular cylinder. The hydrodynamic coefficients have been determined numerically on a computer. The theoretical results agree well with the results of experimental investigations.  相似文献   

10.
A solution is given for the problem of flow past a cascade on an axisymmetric stream surface in a layer of variable thickness, which is a component part of the approximate solution of the three-dimensional problem for a three-dimensional cascade. Generalized analytic functions are used to obtain the integral equation for the potential function, which is solved via iteration method by reduction to a system of linear algebraic equations. An algorithm and a program for the Minsk-2 computer are formulated. The precision of the algorithm is evaluated and results are presented of the calculation of an example cascade.In the formulation of [1, 3] the problem of flow past a three-dimensional turbomachine cascade is reduced approximately to the joint solution of two-dimensional problems of the averaged axisymmetric flow and the flow on an axisymmetric stream surface in an elementary layer of variable thickness.In the following we solve the second problem for an arbitrary cascade with finite thickness rotating with constant angular velocity in ideal fluid flow: the solution is carried out on a Minsk-2 computer.Many studies have been devoted to this problem. A method for solving the direct problem for a cascade of flat plates in a hyperbolic layer was presented in [2]. Methods were developed in [1, 3] for constructing the flow for the case of a channel with variable thickness; these methods are approximately applicable for dense cascades but yield considerable error for small-load turbomachine cascades. The solution developed in [4], somewhat reminiscent of that of [2], is applicable for thin, slightly curved profiles in a layer with monotonically varying thickness. A solution has been given for a circular cascade for layers varying logarithmically [5] and linearly [6]. Approximate methods for slightly curved profiles in a monotonically varying layer with account for layer variability only in the discharge component were examined in [7–9]. A solution is given in [10] for an arbitrary layer by means of the relaxation method, which yields a roughly approximate flow pattern. The general solution of the problem by means of potential theory and the method of singularities presented in [11] is in error because of neglect of the crossflow through the skeletal line. The computer solution of [12] contains an unassessed error for the calculations in an arbitrary layer. The finite difference method is used in [13] to solve the differential equation of flow, which is illustrated by numerical examples for monotonie layers of axial turbomachines. The numerical solution of [13] is very complex.The solution presented below is found in the general formulation with respect to the geometric parameters of the cascade and the axisymmetric surface and also in terms of the layer thickness variation law.The numerical solution requires about 15 minutes of machine time on the Minsk-2 computer.  相似文献   

11.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

12.
In this paper, a new method is presented based on [1]. It can be used to solve the arbitrary nonlinear system of differential equations with variable coefficients. By this method, the general solution for large deformation of nonhomogeneous circular plates resting on an elastic foundation is derived. The convergence of the solution is proved. Finally, it is only necessary to solve a set of nonlinear algebraic equations with three unknowns. The solution obtained by the present method has large convergence range and the computation is simpler and more rapid than other numerical methods.Numerical examples given at the end of this paper indicate that satisfactory results of stress resullants and displacements can be obtained by the present method. The correctness of the theory in this paper is, confirmed.  相似文献   

13.
The results of an experimental investigation of the velocity structure of Poiseuille flow at the entrance section of a two-dimensional horizontal channel with a discontinuous velocity profile at the entrance, at Re=300 and 500, are given. The experimental facility and the technique for measuring the velocity field in this channel using a laser-Doppler velocimeter (LDV) are discussed. Velocity profiles are obtained which are concave on the channel axis, and this agrees with the results of the numerical computations of [1].  相似文献   

14.
The calculation of the diffusive flux of matter to the surface of a body in a fluid stream is one of the basic problems of physicochemical hydrodynamics and finds application in chemical macrokinetics [1].The limiting diffusive flux to a solid spherical particle in a viscous incompressible fluid flow was calculated by Levich [2] under Stokes flow conditions, i.e., for Reynolds numbers R0.In the following we obtain the solution of this problem for finite Reynolds numbers. The solution is based on the results of a determination of the flow field by matching the asymptotic outer (Oseen) and inner (Stokes) expansions of the stream function [2]. Comparison with numerical calculations and experiments [3] shows that the solution obtained with this method describes very well the flow past the sphere over a wide range of values of R.  相似文献   

15.
A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when applied topically, significantly inhibits sexual HIV transmission to women [10]. However the gel for this drug, and anti-HIV microbicide gels in general, have not been designed using full understanding of how gel spreading and retention in the vagina govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model such spreading of microbicide gels, which are inherently non-Newtonian [13], [15]. A yield stress is emerging as one of the important properties of microbicide gel vehicle deployment, as this may improve retention within the vaginal canal. On the other hand, a yield stress may decrease the initial extent of the coating flow. Here, we first explain a certain yield stress paradox observed generally in many lubrication flows. Four conditions are determined, via scaling analysis, which mitigate the inconsistency in the use of lubrication theory to analyze the specific problem of elastic wall squeezing flow of yield stress fluid. Parameters characterizing these conditions are obtained experimentally for a test gel. Using them, it is shown that the lubrication approximation may be applied to the elastic wall-squeezing problem for this gel.  相似文献   

16.
The paper presents an analysis of laminar flow of a film of viscoelastic fluid flowing under gravity down an infinite inclined plane. It is assumed that the mechanical behavior of the fluid can be represented by a generalized Maxwell model, whose constitutive equation contains a time derivative of the deviator of the stress tensor in the Jaumann sense [1. 2]. The equations of motion of the viscoelastic fluid considered here admit an exact solution for the case of rectilinear laminar flow with a plane free boundary. The stability of this flow with respect to surface waves is investigated by the method of successive approximations described in [3, 4].  相似文献   

17.
A simple numerical model is presented to predict the steady-state ice layers on the cooled walls inside a parallel plate channel for arbitrary entrance velocity profiles. The effect of two different entrance velocity distributions (a parabolic velocity distribution and a slug flow) on the shape of the ice-layers are examined. The quality of an approximative solution given in literature was checked by comparing with the numerical results. For the case of a fully developed parabolic velocity distribution at the entrance of the cooled channel the results are compared with experimental findings of Kikuchi [8]. A generally good agreement was found.Es wurde ein einfaches numerisches Modell entwickelt, das es ermöglicht, die stationären Erstarrungsfronten an den Kanalwänden für beliebige Verteilungen des Eintrittsgeschwindigkeitsprofils zu berechnen. Als Beispiele wurden ein voll ausgebildetes Parabelprofil und ein Pfropfenprofil am Eintritt in die Kühlstrecke untersucht. Mit Hilfe der numerischen Lösung konnte die Güte einer aus der Literatur bekannten Näherungslösung zur Berechnung der Erstarrungsfronten überprüft werden. Für den Fall des Parabelprofils am Kanaleintritt wurde die Rechnung mit Meßwerten von Kikuchi [8] verglichen. Es zeigte sich eine gute Übereinstimmung zwischen Theorie und Experiment.  相似文献   

18.
The steady-state convection of a fluid in a thin porous vertical ring located in a heat-conducting half-plane is considered. For this problem approximate equations are derived. For a circular ring an analytic solution is obtained. For an elliptic ring a numerical-analytic solution is found. The Nusselt number and the fluid flow rate as functions of the Rayleigh number, the aspect ratio, and the contour depth are investigated.Many studies have been devoted to fluid convection in a porous ring [1–3]. In [1] two-dimensional convection with an isothermal internal boundary was considered when a temperature stratification is given on the outer boundary. A feature of this problem is the fact that the ring is located inside an impermeable heat-conducting medium in which a thermal gradient directed vertically downward is specified at a large distance from the ring. In [2, 3] two-dimensional convection in an annular ring occupied by a porous medium was investigated. From the results obtained in these studies it follows that in the formulation considered the hydraulic approximation can be used with satisfactory accuracy. In the present study this question is discussed more concretely and the necessary estimates are found. The results obtained could be useful for investigating hydrothermal convection in the Earth's crust, which has important geophysical applications [4–6].  相似文献   

19.
20.
The stability of steady-state flow is considered in a medium with a nonlocal coupling between pressure and density. The equations for perturbations in such a medium are derived in the linear approximation. The results of numerical integration are given for shear motion. The stability of parallel layered flow in an inviscid homogeneous fluid has been studied for a hundred years. The mathematics for investigating an inviscid instability has been developed, and it has been given a physical interpretation. The first important results in flow stability of an incompressible fluid were obtained in the papers of Helmholtz, Rayleigh, and Kelvin [1] in the last century. Heisenberg [2] worked on this problem in the 1920's, and a series of interesting papers by Tollmien [3] appeared subsequently. Apparently one of the first problems in the stability of a compressible fluid was solved by Landau [4]. The first investigations on the boundary-layer stability of an ideal gas were carried out by Lees and Lin [5], and Dunn and Lin [6]. Mention should be made of a series of papers which have appeared quite recently [7–9]. In all the papers mentioned flow stability is investigated in the framework of classical single-phase hydrodynamics. Meanwhile, in recent years, the processes by which perturbations propagate in media with relaxation have been intensively studied [10–12].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 87–93, May–June, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号