首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this paper is to determine temperature and structural changes caused by tableting and to deduce from the combination of temperature measurement and the determination of structural changes whether temperature increase induced by tableting contributes to tablet quality. Tablets were produced of microcrystalline cellulose (MCC), spray-dried lactose, pregelatinized starch, and dicalcium phosphate dihydrate (DCPD) with an instrumented single punch tableting machine. The temperature pattern at the surface of the tablets was measured starting directly after tableting with an infrared thermoviewer and an infrared sensor. Powder and tablets were analyzed by FT-Raman spectroscopy, the tablets were analyzed directly after tableting and after one month of storage. The crushing force of the resulting tablets was determined. For all materials a temperature increase (TI) induced by tableting was determined with both methods used. The order of the temperature increase was the same for both methods used: TI (MCC)>TI (spray-dried lactose)>TI (pregelatinized starch)>TI (DCPD). The order was also identical for the crushing force of the tablets. The extent of differences in the spectra followed the same ranking. In conclusion, the temperature increase contributed to the changes in material structure and thus temperature increase is one factor which determined crushing force and thus tablet properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The aim of this study was to study tablet formation of polyethylene oxides (PEOs) with different molecular masses by means of 3D modeling and comparing the results to those of other more traditional techniques, such as Heckel analysis, analysis by the pressure- time function and energy analysis. The molecular masses ranged between 400,000 and 7,000,000 Da. Material properties, such as water content, particle size and morphology, and glass transition temperature were also studied. To complete this study, elastic recovery dependent on maximum relative density and time were determined. Furthermore, the crushing force of the tablets and their morphology were analyzed. The PEOs consist of smooth edged particles of irregular shape; the particle size is similar to one type of MCC, namely Avicel PH 200. The PEOs are much more ductile during compression than MCC. Elastic recovery after tableting is higher than that for tablets made from MCC and continues for some time after tableting. The crushing force of the resulting tablets is low. In conclusion, with regards to direct compression the PEOs do not appear to be useful as sole tableting excipients.  相似文献   

3.
The present paper aims to show whether the shrinking of the microcrystalline cellulose (MCC) tablets can be derived from underlying processes and whether these processes can be visualized on a nanoscale level. Tableting of MCC was performed on an instrumented eccentric tableting machine to a maximum relative density (ρrel,max) of 0.90 of the tablets. The apparent density of the tablets was analyzed by helium pycnometry after tableting. The breaking surface of a MCC tablet was analyzed directly after tableting continuously by video in an environmental scanning electron microscope (ESEM) at constant humidity. Further the breaking surface was analyzed by transmission electron microscopy (TEM) after freeze fracturing. The results show that firstly apparent density by helium pycnometry increases after tableting and that secondly inside the tablet the fiber strength decreased while also the gaps between the fibers increased as was visualized by ESEM. Further the results by TEM indicate that the decrease in fiber strength is caused by a parallel orientation of the MCC microcrystals which is induced by a mechanical activation due to tableting. In conclusion the measured shrinking MCC tablets after tableting is caused by processes on a nanoscale level.  相似文献   

4.
Young's moduli (E) of three representative tableting excipients and their mix powders were measured for compressed rectangular beam specimens over a range of porosities using a three-point bending technique. We also examined the effects of the amount of water adsorbed on the tensile strength of these specimens. The maximal tensile strength (sigma(max)) decreased with increasing water vapor adsorption for microcrystalline cellulose (MCC) and mixed powders of lactose and MCC. Sigma(max) increased with increasing compression stress and specimen weight for all samples. Sigma(max) of an alpha-lactose and cornstarch mixture with a ratio of 7:3 showed a large value. Young's modulus (E) and the crushing energy (CE) of MCC were larger than those of the other samples. Young's modulus of specimens decreased as the proportion of alpha-lactose increased. Disintegration time (DT) of tablets comprised of lactose and MCC mixture was much faster than those of tablets comprised of individual powders. This appeared to demonstrate the effect of MCC swelling on the disintegration time of the tablet. The disintegration time of the lactose/cornstarch series increased only when Young's modulus increased sharply.  相似文献   

5.
The TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) were synthesized by a sol-hydrothermal method, and were also characterized by XRD, TEM, Surface Photovoltage Spectroscopy (SPS) and Photoluminescence (PL). The effects of capping DBS on photovoltage and photoluminescence performances of TiO2 nanoparticle as well as appropriate capping conditions were principally investigated. The results show that the capping situation is desirable when the pH value and adding DBS amount are in the range of 4.5-5.5 and 1.0%-3.0% of TiO2 weight in advance of the hydrothermal process, respectively. The added DBS could inhibit the growth of anatase crystallite during the hydrothermal process. Moreover, the intensities of SPS and PL of TiO2 nanoparticle decreased after DBS was capped, which is possibly attributed to the electrophilic property of sulfonic acid group (-SO3-) as well as the decrease of surface defect.  相似文献   

6.
The aim was to determine the relevance of the glass transition temperature (Tg) on the compressibility and compactibility of different excipients as celluloses, cellulose derivatives, lactoses, starch, maltodextrin and carrageenan. Their Tg was determined, they were tableted on an instrumented eccentric tableting machine and crushing force was analyzed. Using force, time and displacement tableting behavior was analyzed by 3D modeling. The parameters obtained, d (time plasticity), e (pressure plasticity) and w (fast elastic decompression), show different deformation mechanisms for the materials in relation to their Tg. Further, if the Tg can be reversibly exceeded during tableting, crushing force is high, otherwise crushing force is lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting “pure” IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810–1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) “shift factors” to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å2, 295.1 Å2, 296.8 Å2, and 300.1 Å2; all four of these CCS values were within 1.5% of independently measured DTIM-MS values.  相似文献   

8.
For the on‐line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI‐MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release. Aroma release from flavoured aqueous solutions (in vitro measurements in Teflon bags and glass vials) or flavoured candies (in vivo measurements on six panellists) was studied using APCI‐ and PTR‐MS. Very similar results were obtained with both techniques. Their sensitivities, expressed as limit of detection of 2,5‐dimethylpyrazine, were found equivalent at 12 ng/l air. Analyses of Teflon bag headspace revealed a poor repeatability and important ionization competitions with both APCI‐ and PTR‐MS, particularly between an ester and a secondary alcohol. These phenomena were attributed to dependency on moisture content, gas/liquid volume ratio, proton affinities and product ion distribution, together with inherent drawbacks of Teflon bags (adsorption, condensation of water and polar molecules). Concerning the analyses of vial headspace and in vivo analyses, similar results were obtained with both techniques, revealing no competition phenomena. This study highlighted the equivalent performances of APCI‐MS and PTR‐MS for in vitro and in vivo flavour release investigations and provided useful data on the problematic use of sample bags for headspace analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Microcrystalline cellulose (MCC) granules were prepared by wet granulation using a high-shear mixer. Physical characteristics of the granules were investigated using near IR spectrometry, thermogravimetry and isothermal water vapor adsorption. Near IR spectra of dried MCC granules prepared for various granulation times exhibited different peak intensities at 1428, 1772, and 1920 nm, which were assigned to functional groups of cellulose or water. On isothermogravimetric analysis, the rate of dehydration of water was shown to decrease with granulation time. These results suggest that the physical structure of MCC could change during the granulation process, and the interaction between MCC and water was gradually strengthened. The isothermal water vapor adsorption curves suggested that the amorphous region of MCC would be divided by the strong shear force of the impeller, because the high adsorption ability of intact MCC in the low humidity region was diminished in granules collected following 5 and 10 min of granulation. It was suggested that MCC formed a network which caught water within its structure during the wet granulation process.  相似文献   

11.
Direct‐injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e‐noses) in classification tasks are briefly reviewed, with an emphasis on food‐related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR‐MS), and many results obtained using the powerful PTR‐time of flight‐MS (PTR‐ToF‐MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR‐ToF‐MS. A supervised multivariate data analysis based on partial least squares regression‐discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR‐MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.  相似文献   

12.
郭立颖  史铁钧  段衍鹏 《应用化学》2009,26(9):1005-1010
以氯丙烯和N-乙基咪唑为原料合成了离子液体氯化1-烯丙基-3-乙基-咪唑盐([AEIM]Cl),利用FT-IR和1HNMR对其化学结构进行了表征。采用微波加热法溶解微晶纤维素(MCC),考察 [AEIM]Cl对纤维素的溶解性能。研究了NaOH、微波和高压等3种预处理方式对微晶纤维素的相对结晶度、聚合度及溶解率的影响。利用FT-IR、XRD、TGA和SEM分别对溶解后得到的再生纤维素的化学结构、晶型变化、热稳定性及表观形貌进行测试与分析。结果表明,合成的离子液体是目标产物,对微晶纤维素表现出很好的溶解能力,且高温高压条件下15%的NaOH水溶液对微晶纤维素处理后,得到的纤维素相对结晶度最小,聚合度最低,溶解率最高。溶解过程中纤维素没有发生衍生化反应,溶解后得到的再生纤维素的相对结晶度和微晶尺寸变小,热稳定性降低。  相似文献   

13.
We apply, for first time, the recently developed proton transfer reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR‐TOF‐MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical‐physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by‐products of the cheese industry, such as whey wastewaters. We show that PTR‐TOF‐MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2‐propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3‐pentanedione, ethanol, and off‐flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid‐phase microextraction gas chromatography/mass spectrometry (SPME‐GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR‐TOF‐MS can be used as a rapid, efficient and non‐invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Two catechin epimers and their non‐covalent complexes with γ‐cyclodextrin were studied by using ion mobility coupled with mass spectrometry (IM‐MS). Rapid separation of complexes was achieved with the peak‐to‐peak resolution reaching 0.86 after optimization of IM condition. Collision cross section (CCS) was measured to explore the structural difference of complexes. A gap of 11.75 Å2 between two complexes was found. Molecular modeling and theoretical CCS calculation were adopted to explain the measurement results. Two binding ways of both complexes were found and the calculated CCS corresponds accurately to the measured CCS. Quantification of catechins in mixtures was performed and the relative error was less than 15%, indicating the effectiveness of quantification by IM‐MS.  相似文献   

15.
A rotary tablet machine fitted with 8-mm diameter flat-faced punches was used to measure scraper pressure (SCR), a type of shear stress, to evaluate sticking behavior. The shear stress between the surfaces of the tablet and lower punch was determined using an SCR detection system. Mean surface roughness (R(a)) of tablets, measured by a scanning laser-microscope, was used to estimate the magnitude of sticking. Tablet tensile strength tended to increase with compression pressure at either of the tablet production velocities tested, which was consistent with previous reports. SCR decreased with increasing compression pressure for samples at all compression velocities, and showed a tendency to increase with binder concentration. SCR also tended to increase with compression velocity for samples at all compression pressures, suggesting that the frequency of tablet sticking increased as compression velocity increased. R(a) associated with sticking increased with SCR, indicating that the adhesive force between the particles of the tablet surface and the lower punch surface plays an important role in sticking.  相似文献   

16.
In this paper, a novel hybrid process for the treatment of microcrystalline cellulose (MCC) under hot-compressed water was investigated by applying constant direct current on the reaction medium. Constant current range from 1A to 2A was applied through a cylindrical anode made of titanium to the reactor wall. Reactions were conducted using a specially designed batch reactor (450 mL) made of SUS 316 stainless steel for 30–120 min of reaction time at temperature range of 170–230 °C. As a proton donor H2SO4 was used at concentrations of 1–50 mM. Main hydrolysis products of MCC degradation in HCW were detected as glucose, fructose, levulinic acid, 5-HMF, and furfural. For the quantification of these products, High Performance Liquid Chromatography (HPLC) and Gas Chromatography with Mass Spectroscopy (GC–MS) were used. A ½ fractional factorial design with 2-level of four factors; reaction time, temperature, H2SO4 concentration and applied current with 3 center points were built and responses were statistically analyzed. Response surface methodology was used for process optimization and it was found that introduction of 1A current at 200 °C to the reaction medium increased Total Organic Carbon (TOC) and cellulose conversions to 62 and 81 %, respectively. Moreover, application of current diminished the necessary reaction temperature and time to obtain high TOC and cellulose conversion values and hence decreased the energy required for cellulose hydrolysis to value added chemicals. Applied current had diverse effect on levulinic acid concentration (29.9 %) in the liquid product (230 °C, 120 min., 2 A, 50 mM H2SO4).  相似文献   

17.
The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported.  相似文献   

18.
Proton transfer reaction time of flight mass spectrometry (PTR‐ToF‐MS) is a direct injection MS technique, allowing for the sensitive and real‐time detection, identification, and quantification of volatile organic compounds. When aiming to employ PTR‐ToF‐MS for targeted volatile organic compound analysis, some methodological questions must be addressed, such as the need to correctly identify product ions, or evaluating the quantitation accuracy. This work proposes a workflow for PTR‐ToF‐MS method development, addressing the main issues affecting the reliable identification and quantification of target compounds. We determined the fragmentation patterns of 13 selected compounds (aldehydes, fatty acids, phenols). Experiments were conducted under breath‐relevant conditions (100% humid air), and within an extended range of reduced electric field values (E/N = 48–144 Td), obtained by changing drift tube voltage. Reactivity was inspected using H3O+, NO+, and O2+ as primary ions. The results show that a relatively low (<90 Td) E/N often permits to reduce fragmentation enhancing sensitivity and identification capabilities, particularly in the case of aldehydes using NO+, where a 4‐fold increase in sensitivity is obtained by means of drift voltage reduction. We developed a novel calibration methodology, relying on diffusion tubes used as gravimetric standards. For each of the tested compounds, it was possible to define suitable conditions whereby experimental error, defined as difference between gravimetric measurements and calculated concentrations, was 8% or lower.  相似文献   

19.
A novel in-die evaluation method of tablet capping tendency was proposed based on a force-displacement curve and stress relaxation parameter in a tableting process. In our previous study (Chem. Pharm. Bull., 59, 2011, Nakamura et al.), the phase diagram consisting of elastic recovery energy (E(e)) and plastic deformation energy (E(p)) of compressed powder, named as the E(e)-E(p) diagram, was proposed. However, it was found that capping tendency of tablets prepared by double-compression with multi-component powder formulations cannot be discriminated using the E(e)-E(p) diagram. To improve the capping discrimination ability, we here proposed a novel corrected phase diagram consisting of the E(e) and an interparticle bonding parameter E(b)(t), named as the E(e)-E(b)(t) diagram. The E(b)(t) was proposed as a new parameter expressing strength of the interparticle bonding formed by the stress relaxation inside compressed powder. The E(b)(t) was defined as a product of the E(p) and the stress relaxation parameter Y(t), estimated from the force-displacement curve and the stress relaxation test. The capping discrimination ability of the diagrams was evaluated using a hierarchical-clustering analysis. The results exhibited that the capping tendency could be clearly discriminated using the proposed E(e)-E(b)(t) diagram at the double-compression and the multi-component powder formulations, as compared to the E(e)-E(p) diagram. This proposed diagram can be used for screening of the powder formulations to avoid the capping.  相似文献   

20.
A tableting process analyzer (TabAll) was used to predict disintegration time in the mouth of rapidly disintegrating tablet. Analyzer profiles recorded upper punch displacement and die wall force encountered during tablet processing. Changes in the mixing ratio of spherical sugar granules and microcrystalline cellulose or lactose affected upper punch displacement and die wall force profiles. Analysis of the compaction process revealed a strong association between disintegration time in the mouth and stationary time, relaxation time of upper punch displacement, and relaxation time of die wall force; disintegration time in the mouth decreased as the three parameters increased. Thus, analysis of the compaction process is useful for predicting disintegration time in the mouth of rapidly disintegrating tablet, which can assist the formulation of new rapidly disintegrating tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号