首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thresholds for the detection of temporal gaps were measured using two types of signals to mark the gaps: bandpass-filtered noises and sinusoids. The first experiment used seven subjects with relatively flat unilateral moderate cochlear hearing loss. The normal ear of each subject was tested both at the same sound-pressure level (SPL) as the impaired ear, and at the same sensation level (SL). Background noise was used to mask spectral "splatter" associated with the gap. For the noise markers, gap thresholds tended to be larger for the impaired ears than for the normal ears when the comparison was made at equal SPL; the difference was reduced, but not eliminated, when the comparison was made at equal SL. Gap thresholds for both the normal and impaired ears decreased as the center frequency increased from 0.5 to 2.0 kHz. For the sinusoidal markers, gap thresholds were often similar for the normal and impaired ears when tested at equal SPL, and were larger for the normal ears when tested at equal SL. Gap thresholds did not change systematically with frequency. Gap thresholds using sinusoidal markers were smaller than those using noise markers. In the second experiment, three subjects with single-channel cochlear implants were tested. Gap thresholds for noise bands tended to increase with increasing center frequency when the noise bandwidth was fixed, and to decrease with increasing bandwidth when the center frequency was fixed. Gap thresholds for sinusoids did not change with center frequency, but decreased markedly with increasing level. Gap thresholds for sinusoids were considerably smaller than those for noise bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
High-frequency spectral notches are important cues for sound localization. Our ability to detect them must depend on their representation as auditory nerve (AN) rate profiles. Because of the low threshold and the narrow dynamic range of most AN fibers, these rate profiles deteriorate at high levels. The system may compensate by using onset rate profiles whose dynamic range is wider, or by using low-spontaneous-rate fibers, whose threshold is higher. To test these hypotheses, the threshold notch depth necessary to discriminate between a flat spectrum broadband noise and a similar noise with a spectral notch centered at 8 kHz was measured at levels from 32 to 100 dB SPL. The importance of the onset rate-profile representation of the notch was estimated by varying the stimulus duration and its rise time. For a large proportion of listeners, threshold notch depth varied nonmonotonically with level, increasing for levels up to 70-80 dB SPL and decreasing thereafter. The nonmonotonic aspect of the function was independent of notch bandwidth and stimulus duration. Thresholds were independent of stimulus rise time but increased for the shorter noise bursts. Results are discussed in terms of the ability of the AN to convey spectral notch information at different levels.  相似文献   

3.
Masked thresholds for octave-band noises with center frequencies of 0.4, 1, 2, 4, and 10 kHz and for a 1/3-octave-band noise centered at 10 kHz were obtained from listeners 6.5 months to 20.5 years of age at two levels of a broadband masker (0 and 10 dB/cycle). Thresholds declined exponentially as a function of age for all stimuli tested. The rate and extent of this decline, but not its asymptote, were independent of the frequency or bandwidth employed. The time course for this change parallels that found for electrophysiological maturation of more central auditory processes.  相似文献   

4.
A variable-duration notched-noise experiment was conducted in a noise context. Broadband noise preceded and followed a tone and notched noise of similar duration. Thresholds were measured at four durations (10, 30, 100, and 300 ms), two center frequencies (0.6, 2.0 kHz), and five relative notch widths (0.0, 0.1, 0.2, 0.4, 0.8). At 0.6 kHz, 10-ms thresholds decrease 6 dB across notch widths, while 300-ms thresholds decrease over 35 dB. These trends are similar but less pronounced at 2 kHz. In a second experiment, the short-duration notched noise was replaced with a flat noise which provided an equivalent amount of simultaneous masking and thresholds dropped by as much as 20 dB. A simple combination of simultaneous and nonsimultaneous masking is unable to predict these results. Instead, it appears that the elevated thresholds at short durations are dependent on the spectral shape of the simultaneous masker.  相似文献   

5.
The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common (Delphinus delphis), long-beaked common (D. capensis), Risso's (Grampus griseus), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose (Tursiops truncatus) dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Risso's dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Risso's dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24-35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined (1-100 kHz).  相似文献   

6.
Listeners' sensitivity to interaural correlation of the envelope of high-frequency waveforms and whether such sensitivity might account for detectability in a masking-level difference paradigm were assessed. Thresholds of interaural envelope decorrelation (from a reference correlation of 1.0) were measured for bands of noise centered at 4 kHz and bandwidths ranging from 50-1600 Hz. Decorrelation of the envelope was achieved by "mixing" two independent narrow-band noises. Separately, with the same listeners, NoSo and NoS pi detection thresholds were measured for maskers of the same center frequency and bandwidths. For bandwidths of noise up to about 400 Hz, listeners were similarly sensitive to interaural decorrelation in both types of task. However, for bandwidths greater than 400 Hz or so, while sensitivity in the discrimination task was unaffected, sensitivity was reduced in the NoS pi conditions. Additional data suggested that listeners were able to maintain their sensitivity independent of bandwidth in the discrimination task by focusing on binaural information within select spectral regions of the stimuli.  相似文献   

7.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

8.
Temporal resolution was examined in normal-hearing subjects using a broadband noise and five narrow-band noises with center frequencies (fc) spaced 2 kHz apart between 6 and 14 kHz. Bandwidths of the narrow-band signals were equal to 0.16 fc, and broadband noise maskers with spectral notches were used to restrict the listening bands. Subjects used a Békésy procedure to track the minimum signal level required to keep a periodic temporal gap of fixed duration at threshold. Gap durations from 25 ms to the smallest trackable value were tested with each signal to generate performance curves, which showed the relationship between gap resolution and signal level in the low-to-moderate intensity range. Results showed that gap resolution improved progressively with increased signal level to about 35 dB SL, where minimum gap thresholds of about 3 ms were observed for all signals. These results, when combined with previous low-frequency data, indicate that gap threshold decreases systematically with increased signal frequency to about 5 kHz, and asymptotes at 2-3 ms for higher frequencies. In the context of functional models, the frequency effect is qualitatively consistent with the notion that both the auditory filter and a sensory integrator operate in series to govern temporal resolution in audition.  相似文献   

9.
Measures of auditory performance were compared for an experimental group who listened regularly to music via personal music players (PMP) and a control group who did not. Absolute thresholds were similar for the two groups for frequencies up to 2 kHz, but the experimental group had slightly but significantly higher thresholds at higher frequencies. Thresholds for the frequency discrimination of pure tones were measured for a sensation level (SL) of 20 dB and center frequencies of 0.25, 0.5, 1, 2, 3, 4, 5, 6, and 8 kHz. Thresholds were significantly higher (worse) for the experimental than for the control group for frequencies from 3 to 8 kHz, but not for lower frequencies. Thresholds for detecting sinusoidal amplitude modulation (AM) were measured for SLs of 10 and 20 dB, using four carrier frequencies 0.5, 3, 4, and 6 kHz, and three modulation frequencies 4, 16, and 50 Hz. Thresholds were significantly lower (better) for the experimental than for the control group for the 4- and 6-kHz carriers, but not for the other carriers. It is concluded that listening to music via PMP can have subtle effects on frequency discrimination and AM detection.  相似文献   

10.
Thresholds for 10-ms sinusoids simultaneously masked by bursts of bandpass noise centered on the signal frequency were measured for a wide range of signal frequencies and noise levels. Thresholds were defined as the signal power relative to the masker power at the output of an auditory filter centered on the signal frequency. It was found that the presentation of a continuous random noise, with a spectral notch centered on the signal frequency, produced a reduction in signal thresholds of up to 11 dB. A notched noise spectrum level of 0-5 dB above that of the masker proved most effective in producing a masking release, as measured by a reduction in masked threshold. A release from masking of up to 7 dB could be obtained with a continuous bandpass noise. The most effective spectrum level of this noise was 5 dB below that of the masker. The effect of the continuous notched noise was to reduce signal-to-masker ratios at threshold to about 0 dB, regardless of the threshold in the absence of continuous noise. Thus the greatest release from masking occurred when "unreleased" thresholds were highest. The release from masking is almost complete within 320 ms of notched noise onset, and persists for about 160 ms after notched noise offset, regardless of notched noise level. The phenomenon is similar in many ways to the "overshoot" effect reported by Zwicker [J. Acoust. Soc. Am. 37, 653-663 (1965)]. It is argued that both effects can be largely attributed to peripheral short-term adaptation, a mechanism which is also believed to be involved in forward masking.  相似文献   

11.
Modulation and gap detection for broadband and filtered noise signals   总被引:2,自引:0,他引:2  
Modulation detection thresholds (as a function of sinusoidal amplitude modulation frequency) and temporal gap detection thresholds were measured for three low-pass-filtered noise signals (fc = 1000, 2000, and 4000 Hz), a high-pass-filtered noise signal (fc = 4000 Hz), and a broadband signal. The two latter noise signals were effectively low-pass filtered (fc = 6500 Hz) by the earphone. Each of the filtered signals was presented with a complementary filtered noise masker. Modulation and gap detection thresholds were lowest for the broadband and high-pass signals. Thresholds were significantly higher for the low-pass signals than for the broadband and high-pass signals. For these tasks and conditions, the high-frequency content of the noise signal was more important than was the signal bandwidth. Sensitivity (s) and time constant (tau) indices were derived from functions fitted to the modulation detection data. These indices were compared with gap detection thresholds for corresponding signals. The gap detection thresholds were correlated inversely (rho = -1.0, p less than 0.05) with s (i.e., smaller gap detection thresholds were correlated with greater sensitivity to modulation), but were not correlated significantly with tau, which was relatively invariant across signal conditions.  相似文献   

12.
Evidence is provided for the existence of at least three feature-specific channels in the auditory system. Thresholds for the detection of small repetitive or nonrepetitive frequency changes were measured following various adapting stimuli using a 2IFC procedure in two subjects at 1 kHz. Thresholds for single linear upward frequency sweeps (up sweeps) were increased by a factor of 2 to 3 following exposure to repetitive (8 Hz) up sweeps but not following exposure to down sweeps or tone bursts; correspondingly, thresholds for down-sweep stimuli were increased only by down sweeps. Sinusoidal FM test stimulus thresholds were elevated by both up-sweeps and down-sweeps and to a lesser extent by tone bursts. These results suggest the existence in the auditory system of channels specific to upward FM, downward FM, and probably repetition rate.  相似文献   

13.
Auditory filter shapes were estimated in two bottlenose dolphins (Tursiops truncatus) and one white whale (Delphinapterus leucas) using a behavioral response paradigm and notched noise. Masked thresholds were measured at 20 and 30 kHz. Masking noise was centered at the test tone and had a bandwidth of 1.5 times the tone frequency. Half-notch width to center frequency ratios were 0, 0.125, 0.25, 0.375, and 0.5. Noise spectral density levels were 90 and 105 dB re: 1 microPa2/Hz. Filter shapes were approximated using a roex(p,r) function; the parameters p and r were found by fitting the integral of the roex(p,r) function to the measured threshold data. Mean equivalent rectangular bandwidths (ERBs) calculated from the filter shapes were 11.8 and 17.1% of the center frequency at 20 and 30 kHz, respectively, for the dolphins and 9.1 and 15.3% of the center frequency at 20 and 30 kHz, respectively, for the white whale. Filter shapes were broader at 30 kHz and 105 dB re: 1 microPa2/Hz masking noise. The results are in general agreement with previous estimates of ERBs in Tursiops obtained with a behavioral response paradigm.  相似文献   

14.
Depth resolution of spectral ripples was measured in normal humans using a phase-reversal test. The principle of the test was to find the lowest ripple depth at which an interchange of peak and trough position (the phase reversal) in the rippled spectrum is detectable. Using this test, ripple-depth thresholds were measured as a function of ripple density of octave-band rippled noise at center frequencies from 0.5 to 8 kHz. The ripple-depth threshold in the power domain was around 0.2 at low ripple densities of 4-5 relative units (center-frequency-to-ripple-spacing ratio) or 3-3.5 ripples/oct. The threshold increased with the ripple density increase. It reached the highest possible level of 1.0 at ripple density from 7.5 relative units at 0.5 kHz center frequency to 14.3 relative units at 8 kHz (5.2 to 10.0 ripple/oct, respectively). The interrelation between the ripple depth threshold and ripple density can be satisfactorily described by transfer of the signal by frequency-tuned auditory filters.  相似文献   

15.
Thresholds were measured for the detection of 20-ms sinusoids, with frequencies 500, 4000, or 6500 Hz, presented in bursts of bandpass noise of the same duration and centered around the signal frequency. A range of noise levels from 35 to 80 dB SPL was used. Noise at different center frequencies was equated in terms of the total noise power in an assumed auditory filter centered on the signal frequency. Thresholds were expressed as the signal levels, relative to these noise levels, necessary for subjects to achieve 71% correct. For 500-Hz signals, thresholds were about 5 dB regardless of noise level. For 6500-Hz signals, thresholds reached a maximum of 14 dB at intermediate noise levels of 55-65 dB SPL. For 4000-Hz signals, a maximum threshold of 10 dB was observed for noise levels of 45-55 dB SPL. When the bandpass noises were presented continuously, however, thresholds for 6500-Hz, 20-ms signals remained low (about 1 dB) and constant across level. These results are similar to those obtained for the intensity discrimination of brief tones in bandstop noise [R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 76, 1369-1376 (1984); R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 79, 453-460 (1986)].  相似文献   

16.
An extensive physiological literature, including experimental and clinical studies in humans, demonstrates that activation of the medial olivocochlear (MOC) efferent system, by either contralateral sound or electrical stimulation, can produce significant alterations in cochlear function and suggests a role for the MOC system in influencing the auditory behavior of binaural hearing. The present data are from psychophysical studies in nonhuman primates which seek to determine if the noted physiological changes in response to contralateral acoustic stimulation have a perceptual counterpart. Four juvenile Japanese macaques were trained to respond to the presence of 1-s sinusoids, presented to the test ear, in an operant reinforcement paradigm. Thresholds were compared for frequencies ranging from 1.0 to 4.0 kHz in quiet, with thresholds measured when continuous, two octave-band noise, centered on the test tone frequency, was presented in the contralateral ear. Contralateral noise was presented at levels of 10-60 dB above detection threshold for the test-tone frequency. While some variability was evident across subjects, both in the frequency distribution and magnitude (as a function of contralateral noise level), all subjects exhibited an increase, or suppression of thresholds in the presence of contralateral noise. On average, thresholds increased systematically with contralateral noise level, to a peak of 7 dB. In one subject, the threshold increase seen with contralateral noise was significantly reduced when the MOC was surgically sectioned on the floor of the IVth ventricle. The characteristics of the measured shifts in behavioral thresholds, in the presence of contralateral noise reported here, are qualitatively and quantitatively similar to both efferent physiological suppression effects and psychophysical central masking threshold shifts which have been reported previously. These data suggest that at least some aspects of "central masking" are efferent-mediated peripheral processes, and that the term "central masking" may be incorrect.  相似文献   

17.
Experiments were performed to determine under what conditions quasi-frequency-modulated (QFM) noise and random-sideband noise are suitable comparisons for AM noise in measuring a temporal modulation transfer function (TMTF). Thresholds were measured for discrimination of QFM from random-sideband noise and AM from QFM noise as a function of sideband separation. In the first experiment, the upper spectral edge of the noise stimuli was at 2400 Hz and the bandwidth was 1600 Hz. For sideband separations up to 256 Hz, at threshold sideband levels for discriminating AM from QFM noise, QFM was indiscriminable from random-sideband noise. For the largest sideband separation used (512 Hz), listeners may have used within-stimulus envelope correlation in the QFM noise to discriminate it from the random-sideband noise. Results when stimulus bandwidth was varied suggest that listeners were able to use this cue when the carrier was wider than a critical band, and the sideband separation approached the carrier bandwidth. Within-stimulus envelope correlation was also present in AM noise, and thus QFM noise was a suitable comparison because it made this cue unusable and forced listeners to use across-stimulus envelope differences. When the carrier bandwidth was less than a critical band or was wideband, QFM noise and random-sideband noise were equally suitable comparisons for AM noise. When discrimination thresholds for QFM and random-sideband noise were converted to modulation depth and modulation frequency, they were nearly identical to those for discrimination of AM from QFM noise, suggesting that listeners were using amplitude modulation cues in both cases.  相似文献   

18.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

19.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression.  相似文献   

20.
The shape of the auditory filter was estimated at three center frequencies, 0.5, 1.0, and 2.0 kHz, for five subjects with unilateral cochlear impairments. Additional measurements were made at 1.0 kHz using one subject with a unilateral impairment and six subjects with bilateral impairments. Subjects were chosen who had thresholds in the impaired ears which were relatively flat as a function of frequency and ranged from 15 to 70 dB HL. The filter shapes were estimated by measuring thresholds for sinusoidal signals (frequency f) in the presence of two bands of noise, 0.4 f wide, one above and one below f. The spectrum level of the noise was 50 dB (re: 20 mu Pa) and the noise bands were placed both symmetrically and asymmetrically about the signal frequency. The deviation of the nearer edge of each noise band from f varied from 0.0 to 0.8 f. For the normal ears, the filters were markedly asymmetric for center frequencies of 1.0 and 2.0 kHz, the high-frequency branch being steeper. At 0.5 kHz, the filters were more symmetric. For the impaired ears, the filter shapes varied considerably from one subject to another. For most subjects, the lower branch of the filter was much less steep than normal. The upper branch was often less steep than normal, but a few subjects showed a near normal upper branch. For the subjects with unilateral impairments, the equivalent rectangular bandwidth of the filter was always greater for the impaired ear than for the normal ear at each center frequency. For three subjects at 0.5 kHz and one subject at 1.0 kHz, the filter had too little selectivity for its shape to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号