首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究氧化石墨烯的合成方法及其在生物传感器中的应用.通过Hummer法氧化天然石墨粉制得氧化石墨,在蒸馏水中利用超声分散将氧化石墨剥片,从而合成了氧化石墨烯(GO).通过透射电镜图表征了氧化石墨烯的形貌并通过红外光谱证实氧化石墨烯的形成.将所合成的氧化石墨烯与三角形貌的金纳米颗粒(prism AuNPs)、辣根过氧化...  相似文献   

2.
It is well-known that chemical functionalization of graphene has the great significance.We report the development of a new synthesis method of chloro-functionalized reduced graphene oxide(rGOCl).The rGOCl was prepared by radical reaction,and treatment of carboxyl graphene oxide(GOCOOH) with N-chlorosuccinimide(NCS) at 90℃ for 10 h under an atmosphere of nitrogen,using silver nitrate as catalyst.The morphologies and structures of the prepared materials were investigated by field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy and the thermal gravimetric.Results indicated that the rGOCl can be readily obtained from graphene oxide(GO) in three steps.  相似文献   

3.
The present work is about the preparation of silver (Ag)-doped manganese oxide (MnO2)/graphene oxide (GO) composite thin films are deposited by a facile and binder-free successive ionic layer adsorption and reaction (SILAR) method for the first time. The Brunauer-Emmett-Teller (BET) study revealed the nanosheets of MnO2–Ag3/GO exhibit high specific surface area of 192 m2 g?1. The tailored flower-like morphology and interconnected nanosheets of MnO2–Ag3/GO electrodes achieved high electrochemical performance. The maximum specific capacitance (Cs) of 877 F g?1 at the scan rate of 5 mV s?1 is obtained for MnO2–Ag3/GO electrode tested in 1 M sodium sulfate (Na2SO4) electrolyte with capacity retention of 94.57% after 5000 cycling stability. The MnO2–Ag3/GO composite-based flexible solid state symmetric supercapacitor (FSS-SSC) device delivered Cs as 164 F g?1 with specific energy of 57 Wh kg?1 at specific power of 1.6 kW kg?1 and capacitive retention of 94% after 10,000 cycles.  相似文献   

4.
Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 °C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides.  相似文献   

5.
We fabricated graphene oxide (GO) films on glass substrates by blade coating a lyotropic GO liquid crystal dispersion. Substrate temperature and blading speed were precisely controlled to manipulate the surface morphologies of GO films. The temperature and blade speed influenced the drying rate of film and the amount GO dispersion supplied. By controlling these parameters, film-thickness modulation and three types of surface wrinkle patterns were selectively achieved. We also plotted the wrinkle patterns diagram as functions of the film fabrication conditions. The films exhibited different optical anisotropies depending on wrinkle patterns. GO films with controlled wrinkles can be used as electrodes for supercapacitor applications owing to the large surface areas.  相似文献   

6.
Graphene and graphene oxide nanocomposites are promising and fascinating types of nanocomposites because of their fast kinetics, unique affinity for heavy metals, and greater specific area. Initially, in this study, a green, cost-effective and facile method was utilized to prepare G, GO, CdO, G-CdO, and CdO-GO nanocomposites by Azadirachta indica and then analyzed using UV–vis spectroscopy, Fourier-transform spectroscopy, Raman, X-ray diffraction and scanning electron microscope. The synthesized nanocomposites were explored for chromium elimination from wastewater collected from a petroleum refinery. CdO-GO, G-CdO nanocomposites showed remarkable adsorption capability of 699 and 430 mg g?1 which was higher than G (80 mg g?1), GO (65 mg g?1), and CdO (400 mg g?1). Based on the R2 (correlation coefficient) values, the kinetic statistics of Cr (VI) onto the G, GO, CdO, G-CdO, and CdO-GO were effectively obeyed by pseudo-second-order than by all other models. The R2 values for the five nano-bioadsorbents were extraordinarily high (R2 greater than 0.990) which ensured the chemisorption. This study ensured that the adsorptive removal rate of Cr (VI) is still greater than 85 % after repeated five cycles, suggesting that the produced nanomaterials are adsorbents with strong recyclability.  相似文献   

7.
The compositional flexibility of emulsions, via surfactant and additive choice, has been the major reason for their recognition as tuneable delivery sources for a variety of drugs. In particular, the kinetically stable nanoemulsions (NE) are preferred to minimize the toxicity extents of several poorly hydrophobic drugs through variation in their delivered extents. Inspired by these specialties, we have optimized our curcumin (curc) loaded sodium dodecylsulpahte (SDS) and dodecyl trimethylammonium bromide (DTAB) stabilized mustard oil microemulsions (ME) which catalyzed the pro-oxidant (with ethanol only) to antioxidant graphene oxide (GO) structural expression. The GO was synthesized using wet chemical approach, using ubiquitous graphite flakes as raw material. GO was loaded into 1:1 mixtures of (separately made) SDS and DTAB curc loaded formulations (CLFs). Henceforth, the resultant formulation contained 60% (1:1 SDS and DTAB) CLF mixture and ethanol dispersed GO (@ 1 mg/mL) as the other component. Compared to an insignificant (~47%) free state (while being dispersed in ethanol) DPPH free radical scavenging, the GO dispersed in CLFs enabled (62.47–100.96)% increments in DPPH scavenging, with 94.45% as maximum neutralization extent. The (493.57–3154.95)% particle size increments and (40.64–92.70)% PDI decrements for GO supplemented formulation over SDS and DTAB CLF mixtures, have inferred a wider curc distribution, through the larger GO surface area (SA) and its augmented oxygen enhanced chemical controls. In support, the physicochemical variations, characterized by (1.77–21.23)% γ decrements, (63.56–98.08%) and (68.90–163.22)% η and σ increments, have complemented the dispersion enhancing GO activities. Considering the bioactive nature of curc, these observations predict a prevalence of native curc structure or its enhanced non-covalent interaction controls with GO. Edible nature of mustard oil alongwith frequent inclusion of SDS and DTAB in routine gadgets, propel our formulations as robust media for attaining desired structural activities of functionalized GO derivatives.  相似文献   

8.
We have performed FTIR transmission microspectroscopy on graphene oxide papers oriented with the nominal lattice planes parallel to the infrared optical axis. By polarising the IR light for samples of this geometry, spectral contributions of oriented oxide species are isolated from broad convoluted bands. Analysing the data alongside previous works, including experiments where samples were perturbed by reduction, dehydration and deuteration, we tabulate the most likely assignments for the observed spectral bands.  相似文献   

9.
Fluorescent magnetic graphene oxide hybrid materials have been fabricated by a multistep method. X-ray diffraction, transmission and scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, vibration sample magnetometry, and energy dispersive spectroscopy were used to characterize the resulting material. The results showed that the materials have a saturation magnetization value of 22.0 emu/g at room temperature and exhibit a symmetrical and narrow emission peak at 544 nm. The resultant materials are able to carry an anti-cancer drug, 5-fluorouracil, with a load capacity of 0.24 mg/mg.  相似文献   

10.
The graphene oxide (GO) is carbon based material that has high surface area, high adsorption ability, and is stable at high temperature. In this work, the GO phase was prepared and used for gas chromatographic separation. GO nanosheets were covalently bonded onto the inner surface of fused silica capillary column using 3-aminopropyldiethoxymethyl silane as cross-linking agent. The prepared GO nanosheets were characterized with TEM and the GO coating was characterized with SEM. As a high performance stationary phase, GO provides not only a high surface area to increase the phase ratio but also rich functional groups for the formation of hydrophobicity, hydrogen bonding, and π–π electrostatic stacking interactions with volatile aromatic or unsaturated organic compounds. Thus, mixtures of a wide range of organic compounds including alcohols and aromatic compounds were well separated and an efficiency of 1990 theoretical plates per meter for anisole was obtained on GO coated 1.0 m × 200 μm i.d. fused silica capillary column. The experimental results demonstrate that GO coated capillary columns are promising for gas chromatographic separation.  相似文献   

11.
The binding coverage of aptamer was an important restricted factor for aptamer‐based affinity enrichment strategy for capturing target molecules. Herein, we designed and prepared aptamer functionalized graphene oxide based nanocomposites (GO/NH2‐NTA/Fe3O4/PEI/Au), and the coverage density of aptamer was high to 33.1 nmol/mg. The high aptamer coverage density was contributed to the large surface area of graphene oxide. The successive modification of Nα,Nα‐Bis(carboxymethyl)‐L‐lysine, magnetic nanoparticles, polyethylenimine, and Au nanoparticles ensured the histone purification with fast speed and high purity. Histones could be captured rapidly and specifically from nucleoproteins by our aptamer based purification strategy, while traditional acid‐extraction could not specifically enrich histones. Compared with traditional acid‐extraction method, rapid and efficient discovery of histones and their post‐translational modifications, such as several kinds of methylation at H3.1K9 and H3.1K27, were achieved confidently. It demonstrated that our aptamer functionalized magnetic graphene oxide nanocomposites have a great potential for histone analysis.  相似文献   

12.
Graphene oxide (GO) nanosheets dispersed in strong acidic t-butanol/water medium can be reduced and self-assembled into a self-standing graphene hydrogel under γ-ray radiation, providing a facile and economical preparation method for hydroxylalkylated graphene-based aerogel.  相似文献   

13.
A hybrid material of graphene oxide (GO) sheets beaded with ZnO nanoparticles was prepared. The material extends over a few hundred square nanometers, in which the ZnO nanoparticles (average diameter (∼5 nm)) are dispersed evenly on the GO sheet. Both the surface photovoltage or surface photocurrent intensity for the material are much stronger than for pure ZnO nanoparticles, meaning that the free charge carriers can effectively be transferred from ZnO nanoparticles to GO sheets, which can serve as a probe to monitor the electron transfer from excited ZnO to GO. Anchoring ZnO nanoparticles on two dimensional carbon nanostructures such as GO can pave a way towards the design of ordered nanostructure assemblies that can harvest light energy efficiently.  相似文献   

14.
Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis.  相似文献   

15.
Antimicrobial-resistance (AMR) is a global health challenge arising from the evolution of bacteria, viruses, fungi, and parasites, such that pathogenic microorganisms no longer respond to classical therapies. AMR and the rise of so-called ‘superbugs’ requires innovative nanomaterials and biostatic strategies. Here we report a broad spectrum, antimicrobial nanomaterial integrating light-responsive ZnO nanoparticles (NP) and reduced graphene oxide (rGO) into a heterojunction semiconductor nanocomposite for water depollution. Simultaneous chemical reduction of Zn sulphate and GO sheets yields a low concentration (0.5 mol%) of 10 nm ZnO nanoparticles decorating fragmented rGO nanosheets, with a total surface area of 12 m2/g and optical band gap of 1.6 eV. Antimicrobial performance of the ZnO-rGO nanocomposite was evaluated against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli 0157:H7 and Salmonella typhimurium bacteria, which are prevalent in contaminated aquatic systems; antimicrobial efficacy against these organisms was 96%, 97%, and 73%, respectively, for a loading of 2 mg/mL, evidencing a strong synergy compared with pure ZnO or rGO components. ZnO-rGO was also an effective photocatalyst for the aqueous degradation of Malachite Green dye, suggesting that its mode of antibacterial action reflects the production of reactive oxygen species under ambient illumination.  相似文献   

16.
Graphene oxide nanosheets often bear a wide size distribution. However, it is critical to have nanosheets with narrow size distribution for their unique size‐dependent physiochemical properties, and nanosheets with a narrow size distribution are the cornerstones for application. Therefore, efficient separation methods of graphene nanosheets have been given considerable attention in many scientific areas recently. Free‐flow electrophoresis is extensively used in the separation and purification of biological molecules with continuous flow separation. The charged graphene oxide nanosheets to some extent are very close in size to biological molecules and share similarity in motion behavior in an electric field. Thus, in the present work, we present a new and simple means to separate graphene oxide nanosheets into more mono‐dispersed size groups by using the free‐flow electrophoresis technique. By optimizing the separation conditions, we were able to obtain graphene oxide sheets with narrow size distribution. The separated samples were characterized by atomic force microscopy, and the size measurements were made by using the software “Image Pro Plus.” In addition, a brief discussion is also given into the theoretic background of the separation of graphene oxide according to the size by the technique of preparative free‐flow electrophoresis.  相似文献   

17.
《印度化学会志》2021,98(12):100259
The effect of UV irradiation on the wettability of GO films, as well as the possibility of making a film with different properties of its surface, the Janus film, has been studied. The O/C ratio changes from 0.32 to 0.26 after 6 ​h of UV irradiation. The contact angle of water droplet wetting on an unirradiated surface is θ ​≈ ​35°. The contact angle reaches more than 95° on the irradiated surface, which means that a hydrophobic surface on a film can be obtained. The origin of amphiphilic properties of the GO film are associated with the photochemical reduction of GO.  相似文献   

18.
Porous graphene oxide/chitosan(PGOC) materials were prepared by a unidirectional freeze-drying method.Their porous structure,mechanical property and adsorption for metal ions were investigated.The results show that the incorporation of graphene oxide(GO) significantly increased the compressive strength of the PGOC materials.The saturated adsorption capacity of Pb2+ increased about 31%,up to 99 mg/g when 5 wt%GO was incorporated These biodegradable,nontoxic,efficient PGOC materials will be a potential adsorbent for metal ions in aqueous solution.  相似文献   

19.
刘璇  周祝 《化学通报》2021,84(7):704-708
为了改善氧化石墨烯(GO)膜的低渗透性和不稳定性,本文采用过氧化氢对GO进行改性后抽滤成膜,并在不同温度下对膜进行热还原.采用超高性能全自动气体吸附仪、透射电镜、扫描电镜、拉曼光谱仪、接触角、X射线衍射等对材料进行结构和形貌表征.分析不同HGO(H2O2改性GO)负载量和不同温度热还原对膜水通量和截留率的影响.在优化条...  相似文献   

20.
An effective strategy for the polyolefin-functionalized graphene oxide (fGO) using two-step methods has been reported for GO/HDPE nanocomposite with excellent mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号