首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposed a novel method for ultra-trace detection of pesticides combining electrochemical reduction of Ellman's reagent with acetylcholinesterase (AChE) inhibition. The amperometric biosensor, fabricated by immobilizing AChE on multi-walled carbon nanotubes-chitosan (MWCNTs-Chi) nanocomposites modified glassy carbon electrode, enjoyed high sensitivity owing to the excellent conductivity and favourable biocompatibility of MWCNTs-Chi nanocomposites. Meanwhile, the sensitivity of the biosensor was further enhanced using the electrochemical reduction signal of DTNB for determination. Under optimum conditions, methyl parathion was detected based on its inhibition effect on AChE activity and the subsequent change in electrochemical reduction response of DTNB. Good relationship was obtained between the reduction current and pesticide concentration in the ranges of 5.0 × 10−7 to 1.0 × 10−12 M with a detection limit of 7.5 × 10−13 M (S/N = 3). Moreover, the proposed protocol was successfully employed for the determination of methyl parathion in water and soil samples.  相似文献   

2.
This paper describes the development and optimization of an amperometric biosensor for monitoring ethanol in beverages. The biosensor is constructed by cross-linking a quinoprotein alcohol dehydrogenase (QH-ADH) to an Os-complex-modified poly(vinylimidazole) redox polymer using poly(ethylene glycol) diglycidyl ether. The optimum biosensor configuration was evaluated by changing the ratio between enzyme, redox polymer, and cross-linker using conventional graphite rods as basis electrodes. The optimized sensor showed a sensitivity of 0.336±0.025 A M−1 cm2 for ethanol and a detection limit (calculated as three times the signal-to-noise ratio) of 1 μM.This biosensor configuration was further evaluated in a conventional flow-injection system and the applicability for the determination of ethanol in diverse wine samples could be successfully demonstrated. Adaptation of this sensor configuration to screen-printed (SP) electrodes allowed their integration into an automated sequential-injection analyzer and the successful on-line monitoring of ethanol during wine fermentation processes.  相似文献   

3.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

4.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

5.
Vanesa Sanz 《Talanta》2009,78(3):846-965
A new approach for glucose determination in blood based on the spectroscopic properties of blood hemoglobin (Hb) is presented. The biosensor consists of a glucose oxidase (GOx) entrapped polyacrylamide (PAA) film placed in a flow cell. Blood is simply diluted with bidistilled water (150:1, v:v) and injected into the carrier solution. When reaching the PAA film, the blood glucose reacts with the GOx and the resulting H2O2 reacts with the blood Hb. This produces an absorbance change in this compound. The GOx-PAA film can be used at least 100 times. Lateral reactions of H2O2 with other blood constituents are easily blocked (by azide addition). The linear response range can be fitted between 20 and 1200 mg dL−1 glucose (R.S.D. 4%, 77 mg dL−1). In addition to the use of untreated blood, two important analytical aspects of the method are: (1) the analyte concentration can be obtained by an absolute calibration method; and (2) the signal is not dependent on the oxygen concentration.A mathematical model relating the Hb absorbance variation during the reaction with the glucose concentration has been developed to provide theoretical support and to predict its application to other compounds after changing the GOx by another enzyme. The method has been applied to direct glucose determination in 10 blood samples, and a correlation coefficient higher than 0.98 was obtained after comparing the results with those determined by an automatic analyzer. As well as sharing some of the advantages of disposable amperometric biosensors, the most significant feature of this approach is its reversibility.  相似文献   

6.
Zhang F  Li C  Li X  Wang X  Wan Q  Xian Y  Jin L  Yamamoto K 《Talanta》2006,68(4):1353-1358
A reagentless amperometric uric acid biosensor based on zinc sulfide (ZnS) quantum dots (QDs) was firstly developed. It could detect uric acid without the presence of an electron mediator. The carboxyl group functionalized ZnS QDs were synthesized, and they were soluble biocompatible and conductive. ZnS QDs conjugates could provide increased enzyme binding sites, which may result in higher enzyme loading. Thus, the proposed uricase/ZnS QDs/l-cys biosensor exhibited higher amperometric response compared to the one without QDs (uricase/l-cys biosensor). In addition, there was little AA interference. It showed a linear dependence on the uric acid concentration ranging from 5.0 × 10−6 to 2.0 × 10−3 mol L−1 with a detection limit of 2.0 × 10−6 mol L−1 at 3σ.  相似文献   

7.
Mathebe NG  Morrin A  Iwuoha EI 《Talanta》2004,64(1):115-120
An amperometric biosensor was prepared by in situ deposition of horseradish peroxidase (HRP) enzyme on a polyaniline (PANI)-doped platinum disk electrode. The PANI film was electrochemically deposited on the electrode at 100 mV s−1/Ag-AgCl. Cyclic voltammetric characterization of the PANI film in 1 M HCl showed two distinct redox peaks, which prove that the PANI film was electroactive and exhibited fast reversible electrochemistry. The surface concentration and film thickness of the adsorbed electroactive species was estimated to be 1.85×10−7 mol cm−2 and approximately 16 nm, respectively. HRP was electrostatically immobilized onto the surface of the PANI film, and voltammetry was used to monitor the electrocatalytic reduction of hydrogen peroxide under diffusion-controlled conditions. Linear responses over the concentration range 2.5×10−4 to 5×10−3 M were observed. Spectroelectrochemistry was used to monitor the changes in UV-vis properties of HRP, before and after the catalysis of H2O2. The biosensor surface morphology was characterized by scanning electron microscopy (SEM) using PANI-doped screen-printed carbon electrodes (SPCEs) in the presence and absence of (i) peroxidase and (ii) peroxide. The SEM images showed clear modifications of the conducting film surface structure when doped with HRP, as well as the effect of hydrogen peroxide on the morphology of biosensor.  相似文献   

8.
An amperometric nicotine inhibition biosensor has been substantially simplified and used for determination of nicotine in tobacco sample. Besides the use of single enzyme choline oxidase to replace bienzyme, the use of 1,4-benzoquinone as an electron mediator makes it possible to avoid the use of oxygen or hydrogen peroxide sensor as the internal transducer. Choline oxidase was immobilized on the carbon paste electrode through cross-linking with bovine serum albumin (BSA) by glutaraldehyde. In the presence of choline oxidase and its endogenous cofactor flavin-ademine dinneleotide (FAD), choline was oxidized into betaine while FAD was reduced to FADH2 which subsequently reduced 1,4-benzoquinone into hydroquinone. The later was finally oxidized at a relatively low potential of +450 mV versus saturated calomel electrode (SCE). Nicotine inhibits the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to choline within 1.25×10−4 to 1.25×10−3 mol l−1. The nicotine measurements were carried out in 0.067 mol l−1phosphate buffer of pH 7.4 at an applied potential of 450 mV versus SCE. The electrode provided a linear response to nicotine over a concentration range of 2.0×10−5 to 9.2×10−4 mol l−1 with a detection limit of 1.0×10−5 mol l−1. The system was applied to the determination of nicotine in tobacco samples.  相似文献   

9.
An amperometric biosensor based on peroxidases from Brassica napus hairy roots (PBHR) used to determine the total polyphenolic content in wine and tea samples is proposed by the first time. The method employs carbon paste (CP) electrodes filled up with PBHR, ferrocene (Fc), and multi-walled carbon nanotubes embedded in a mineral oil (MWCNT + MO) at a given composition (PBHR-Fc-MWCNT + MO). The biosensor was covered externally with a dialysis membrane, which was fixed at the electrode body side part with a Teflon laboratory film and an O-ring. Calibration curves obtained from steady-state currents as a function of the concentration of a polyphenolic standard reference compound such as t-resveratrol (t-Res) or caffeic acid (CA) were then used to estimate the total polyphenolic content in real samples. The reproducibility and the repeatability were of 7.0% and 4.1% for t-Res (8.4% and 5.2% for CA), respectively, showing a good biosensor performance. The calibration curves were linear in a concentration range from 0.05 to 52 mg L−1 and 0.06 to 69 mg L−1 for t-Res and CA, respectively. The lowest polyphenolic compound concentration values measured experimentally for a signal to noise ratio of 3:1 were 0.023 mg L−1 and 0.020 mg L−1 for t-Res and CA, respectively.  相似文献   

10.
The construction of amperometric enzymeless biosensors for phenolic compounds determination, using carbon paste electrode modified with copper phtalocyanine (CuPc) and histidine (His), based on the chemistry of the dopamine β-monooxygenase (DβM) enzyme that catalyzes the hydroxylation of the dopamine and its analogs is shown. The modified carbon paste was evaluated on electrodes constructed in two ways: putting the paste into a cavity of a rotating disk electrode and a platinum slide electrode fixed into a glass tube. The sensor in hydrodynamic conditions presented a linear response range between 30 and 250 μmol l−1, with a sensitivity of 4.6±0.1 nA l μmol−1 cm−2 for catechol, response time of 3 s and lifetime of about 50 days when stored at room temperature. The sensor in static conditions showed a linear response range from 40 to 250 μmol l−1, with a sensitivity of 0.30±0.01 nA l μmol−1 cm−2 for catechol. The sensors presented the following relative response order for dopamine and some analog species: catechol>dopamine>guaiacol>serotonin>phenol.  相似文献   

11.
A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L−1 with detection limit of 0.01 mmol L−1. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days).  相似文献   

12.
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.  相似文献   

13.
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E = −0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L−1 nitrate with a detection limit of 4.2 μmol L−1 (S/N = 3). The repeatability of measurements was determined as 4.7% (n = 9) at the best conditions (flow rate: 3.0 mL min−1, sample volume: 150 μL and nitrate concentration: 0.5 mmol L−1) with a sampling rate of 60 samples h−1. The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (−0.20 V).  相似文献   

14.
Luque GL  Rodríguez MC  Rivas GA 《Talanta》2005,66(2):467-471
The performance of amperometric glucose biosensors based on the dispersion of glucose oxidase (GOx) and copper oxide within a classical carbon (graphite) paste composite is reported in this work. Copper oxide promotes an excellent electrocatalytic activity towards the oxidation and reduction of hydrogen peroxide, allowing a large decrease in the oxidation and reduction overpotentials, as well as an important enhancement of the corresponding currents. Therefore, it is possible to perform the glucose biosensing at low potentials where there is no interference even in large excess of ascorbic acid, uric acid or acetaminophen. The influence of the copper oxide and glucose oxidase content in the paste on the analytical performance of the bioelectrode is discussed. The resulting biosensor shows a fast response, a linear relationship between current and glucose concentration up to 1.35 × 10−2 M (2.43 g L−1) and a detection limit of 2.0 × 10−5 M. The effect of the presence of the enzyme in the composite material on the dispersion of the copper oxide particles is also discussed.  相似文献   

15.
An enzymatic amperometric electrode with extended analytical range and improved stability for oxalate determination has been developed. Glutarlaldehyde/mucin/carbopol matrix was used for the crosslinking of the enzyme between polymeric membranes to form a classical laminate construction (sandwich) and compared with the glutaraldehyde/mucin/enzyme and glutaraldehyde/albumin/enzyme.The use of a sulphonated membrane as internal membrane allowed rejection of the most important electrooxidable urine interferents. The recovery assays were highly satisfactory. The wide linear response in the range 2-400 μM after 1/10 urine dilution (corresponding to 20-4000 μM) made it suitable for clinical range. High correlation with the standard spectrophotometric method was obtained (r2 = 0.98, y = 0.89x, n = 25).  相似文献   

16.
The study details the development of a fully validated, rapid and portable sensor based method for the on-site analysis of microcystins in freshwater samples. The process employs a novel lysis method for the mechanical lysis of cyanobacterial cells, with glass beads and a handheld frother in only 10 min. The assay utilises an innovative planar waveguide device that, via an evanescent wave excites fluorescent probes, for amplification of signal in a competitive immunoassay, using an anti-microcystin monoclonal with cross-reactivity against the most common, and toxic variants. Validation of the assay showed the limit of detection (LOD) to be 0.78 ng mL−1 and the CCβ to be 1 ng mL−1. Robustness of the assay was demonstrated by intra- and inter-assay testing. Intra-assay analysis had % C.V.s between 8 and 26% and recoveries between 73 and 101%, with inter-assay analysis demonstrating % C.V.s between 5 and 14% and recoveries between 78 and 91%. Comparison with LC–MS/MS showed a high correlation (R2 = 0.9954) between the calculated concentrations of 5 different Microcystis aeruginosa cultures for total microcystin content. Total microcystin content was ascertained by the individual measurement of free and cell-bound microcystins. Free microcystins can be measured to 1 ng mL−1, and with a 10-fold concentration step in the intracellular microcystin protocol (which brings the sample within the range of the calibration curve), intracellular pools may be determined to 0.1 ng mL−1. This allows the determination of microcystins at and below the World Health Organisation (WHO) guideline value of 1 μg L−1. This sensor represents a major advancement in portable analysis capabilities and has the potential for numerous other applications.  相似文献   

17.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

18.
A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h−1) and ease of automation.  相似文献   

19.
A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at −0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL−1 with a slope value of −82.3 nA ng−1 mL, and a detection limit of 0.43 ng mL−1. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL−1 concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 ± 3% and 99 ± 3%, respectively, were obtained.  相似文献   

20.
An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and β-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 μg L−1) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号