首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wall paintings typically contain low concentrations of organic materials within a largely inorganic matrix and are characterised by their high porosity and long-term exposure to severe environmental conditions. The identification of organic materials within specific paint or plaster layers is challenging and the inherent characteristics of wall painting samples present further complications. Embedding materials (such as epoxy, polyester and acrylic-based resins) used to produce cross-sections often infiltrate porous and leanly bound samples, and compromise the interpretation of Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectra and the qualitative identification of natural organic materials. An alternative method for the preparation of cross-sections of wall painting samples was developed using cyclododecane (C(12)H(24)) as a temporary consolidant and barrier coating to encapsulate the sample, and to provide necessary support to produce a cross-section through microtoming. Impacts of traditional and novel sample preparation techniques on the identification of organic materials with micro-FTIR-ATR were examined for both replica and real wall painting samples.  相似文献   

2.
Paint cross-sections have been analysed using the attenuated total reflection technique combined with FTIR mapping microspectroscopy in order to characterise the nature of the compounds present and map their localisation in the stratigraphy. The study reveals the possibilities offered by micro-ATR devices for obtaining informations about the organic substances employed in painting techniques and in particular their distribution in the different layers, showing a real improvement over traditional analytical investigations in use for the detection of organic substances. Limitations, such as the contamination of the embedding resin and the typical spectral resolution (20 μm) are presented and alternative methods were proposed to obtain better results. In particular, the use of an infrared transparent salt (KBr) as embedding material for the cross-sections is evaluated and seems to be very promising. Furthermore, ATR mapping represent a useful non-destructive analytical technique complementary to others molecular and elemental analyses to be performed afterwards such as SEM-EDX.  相似文献   

3.
The potential of attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging for the characterisation of the chemical components of paint cross sections from old master paintings was investigated. Three cross sections were chosen to cover a variety of the analytical problems encountered in samples from paintings. The binding medium and degradation products in a green paint sample from a fifteenth-century Florentine painting were imaged, as well as a thin layer within a cross-section from a fifteenth-century German painting, and multiple thin surface coatings on a painting of the 1760s by Peter Romney. The application of chemometric methods for further analysis of the large data set generated for each sample was also explored. The study demonstrated the advantages of ATR-FTIR imaging, which allowed images to be obtained with high spatial resolution (ca. 3-4 microm) without the need to microtome the sample. The gain in sensitivity in detecting trace materials and the information derived from the location of these compounds in the sample was especially valuable, improving interpretation of the FTIR analysis and extending knowledge of the sample composition beyond that obtainable with other analytical techniques.  相似文献   

4.
Fourier transform infrared (FTIR) spectroscopy using attenuated total reflection (ATR) is commonly used for the examination of bone. During sample preparation bone is commonly ground, changing the particle size distribution. Although previous studies have examined changes in crystallinity caused by the intensity of grinding using FTIR, the effect of sample preparation (i.e. particle size and bone tissue type) on the FTIR data is still unknown.This study reports on the bone powder particle size effects on mid-IR spectra and within sample variation (i.e. periosteal, mesosteal, trabecular) using FTIR-ATR. Twenty-four archaeological human and faunal bone samples (5 heated and 19 unheated) of different chronological age (Neolithic to post-Medieval) and origin (Belgium, Britain, Denmark, Greece) were ground using either (1) a ball-mill grinder, or (2) an agate pestle and mortar, and split into grain fractions (>500 μm, 250–500 μm, 125–250 μm, 63–125 μm, and 20–63 μm).Bone powder particle size has a strong but predictable effect on the infrared splitting factor (IRSF), carbonate/phosphate (C/P) ratio, and amide/phosphate (Am/P) values. The absorbance and positions of the main peaks, the 2nd derivative components of the phosphate and carbonate bands, as well as the full width at half maximum (FWHM) of the 1010 cm−1 phosphate peak are particle size dependent. This is likely to be because of the impact of the particle size on the short- and long-range crystal order, as well as the contact between the sample and the prism, and hence the penetration depth of the IR light. Variations can be also observed between periosteal, cortical and trabecular areas of bone. We therefore propose a standard preparation method for bone powder for FTIR-ATR analysis that significantly improves accuracy, consistency, reliability, replicability and comparability of the data, enabling systematic evaluation of bone in archaeological, anthropological, paleontological, forensic and biomedical studies.  相似文献   

5.
Industrially relevant characterization of multi-walled carbon nanotubes (MWCNT) is still a challenging task. The aim of this work is to show novel and fast concepts for the chemical characterization of carbon nanotubes (CNT) by a combination of analytical techniques. Information obtained by individual tools like Fourier transform infrared spectroscopy (FTIR), attenuated total reflection infrared spectroscopy or Raman spectroscopy is not providing a full picture of the functionalization of MWCNTs. However, a combination of tools such as FTIR or mass spectrometry with thermogravimetric methods proved to be very useful. Sample preparation for FTIR and Raman spectroscopy is another focus of this contribution because of its strong effect on the results obtained. We also are suggesting methods for sample preparation that lead to highly reproducibility results. Measurements have been carried out on typical CNT samples such as commercially available pristine, carboxylated and amino-functionalized MWCNTs, and on polystyrenegrafted MWCNTs. The results may serve as a guidance for the qualitative and quantitative characterization of CNT.
Figure
3D-TGA-FTIR image of amine functionalized MWCNT with relating TGA curve  相似文献   

6.
A survey of gilts applied to stucco surfaces that specifically focuses on the compositions of their colored grounds is reported. Gilt samples of a common geographical (Lombardy in Italy) and temporal provenance (17th–18th century) were studied in the form of polished cross-sections by optical and electron microscopy (SEM-EDS), micro-Raman (μRaman) spectroscopy and Fourier-transform infrared microspectroscopy (μFTIR). Comparing samples with superimposed grounds and gilts enabled light to be shed on the choice of specific materials, their stratigraphic functions, decorative effects, and technological performances. Iron oxide pigments were found in the older grounds, sometimes in the presence of lead white (2PbCO3·Pb(OH)2) or minium (Pb3O4). In more recent grounds, chrome yellow (PbCrO4), chrome orange (PbCrO4·PbO), cinnabar (α-HgS) and barium white (BaSO4), invariably mixed with lead white, were encountered. Evidence for the use of organic mordants (colophony and wax, or siccative oil) was obtained by μFTIR. This combined μFTIR and μRaman spectroscopic and elemental (SEM-EDS) analytical approach enhances knowledge of the composition of gold grounds, their variability and their chronological evolution.  相似文献   

7.
The identification and localization of organic components in the complex stratigraphy of paintings play a crucial role in studies of painting techniques and authentication, restoration, and conservation of artworks. Much scientific effort has been expended for the development of analytical approaches suitable for the investigation and characterization of organic substances, allowing high sensitivity, specificity, and spatial resolution. Proteins (e.g., ovalbumin, casein, and collagen from different animal sources) are one of the classes of organic substances most widely used as painting materials. The analytical techniques commonly used for their analysis (micro Fourier transform infrared spectroscopy, chromatographic techniques, and proteomic approaches) have limits related to the lack of specificity or to the absence of information concerning the stratigraphic localization of the detected proteins. Immunological techniques are a promising alternative approach for the characterization of proteins in artworks. Thanks to the high specificity of antigen–antibody reactions, these techniques are widely used for the analysis of proteins in bioanalytical and clinical chemistry and recently they have been successfully applied in the field of science for conservation of cultural heritage. The present research aimed to develop an ultrasensitive chemiluminescent immunochemical procedure for the simultaneous localization of ovalbumin and bovine casein (two common proteins found in binding media or varnishes of artistic and archaeological samples) in resin-embedded painting micro cross-sections. The possibility of performing the simultaneous identification of different proteins in painting cross-sections is of particular relevance in the field of cultural heritage because samples are often small and available in a limited number; therefore, the maximum amount of information must be obtained from each of them.  相似文献   

8.
Wet-milling protocol was employed to produce pressed powder tablets with excellent cohesion and homogeneity suitable for laser ablation (LA) analysis of volatile and refractive elements in sediment. The influence of sample preparation on analytical performance was also investigated, including sample homogeneity, accuracy and limit of detection. Milling in volatile solvent for 40 min ensured sample is well mixed and could reasonably recover both volatile (Hg) and refractive (Zr) elements. With the exception of Cr (−52%) and Nb (+26%) major, minor and trace elements in STSD-1 and MESS-3 could be analysed within ±20% of the certified values. Comparison of the method with total digestion method using HF was tested by analysing 10 different sediment samples. The laser method recovers significantly higher amounts of analytes such as Ag, Cd, Sn and Sn than the total digestion method making it a more robust method for elements across the periodic table. LA-ICP-MS also eliminates the interferences from chemical reagents as well as the health and safety risks associated with digestion processes. Therefore, it can be considered as an enhanced method for the analysis of heterogeneous matrices such as river sediments.  相似文献   

9.
Monitoring food quality and safety need the development of highly sensitive and accurate techniques. Organochlorine pesticides (OCPs) are a widely used category of pesticides. The high toxicity and high stability of OCPs pesticides made their detection the target of several research studies. Chloridazon, one of the wide used OCPs pesticides, and its major degradation product (chloridazon-desphenyl) have shown high harmful effects. Here, a specific OCPs electrochemical sensor was developed. Fe3O4 nanostructures decorated indium tin oxide (ITO) electrode showed high specificity towards the OCPs because of the capability of chlorine atoms, to interact with the iron oxide NPs. The chemical composition and the morphology of the modified nanosensor were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), energy dispersive x-ray (EDX), and Raman spectroscopy techniques. The results showed the formation of two morphologies, including spongy agglomerated NPs with100 nm in diameter and nanofibers with 20 nm in thickness. The modified electrode exhibited a high sensitivity with a detection limit of 0.9 μmol L−1. Also, chloridazon was detected in the presence of various interferences, including isoproturon pesticide and urea. Furthermore, chloridazon pesticide was also detected in a surface water sample.  相似文献   

10.
ABSTRACT: BACKGROUND: Establishing the distribution of materials in paintings and that of their degradation products by imaging techniques is fundamental to understand the painting technique and can improve our knowledge on the conservation status of the painting. The combined use of chromatographic-mass spectrometric techniques, such as GC/MS or Py/GC/MS, and the chemical mapping of functional groups by imaging SR FTIR in transmission mode on thin sections and SR XRD line scans will be presented as a suitable approach to have a detailed characterisation of the materials in a paint sample, assuring their localisation in the sample build-up. This analytical approach has been used to study samples from Catalan paintings by Josep Maria Sert y Badia (20th century), a muralist achieving international recognition whose canvases adorned international buildings. RESULTS: The pigments used by the painter as well as the organic materials used as binders and varnishes could be identified by means of conventional techniques. The distribution of these materials by means of Synchrotron Radiation based techniques allowed to establish the mixtures used by the painter depending on the purpose. CONCLUSIONS: Results show the suitability of the combined use of SR FTIR and SR XRD mapping and conventional techniques to unequivocally identify all the materials present in the sample and their localization in the sample build-up. This kind of approach becomes indispensable to solve the challenge of micro heterogeneous samples. The complementary interpretation of the data obtained with all the different techniques allowed the characterization of both organic and inorganic materials in the samples layer by layer as well as to establish the painting techniques used by Sert in the works-of-art under study.  相似文献   

11.
《Analytica chimica acta》2004,513(1):263-268
Fourier transform infrared (FTIR) spectrometry has brought many advantages to wine analysis, such as fast analysis and good precision and accuracy for a great number of parameters. This technology has to be cautiously applied, therefore the need for analytical validation. Recovery results of several current wine control parameters using a FTIR wine analyser were determined. Good results were obtained for ethanol (addition of ethanol), total acid (addition of tartaric acid), total sugars in sweet wines (addition of glucose) and sulfate (addition of sulfuric acid). On the contrary, worse results were obtained for total acid (addition of acetic and sulfuric acids), volatile acid (addition of acetic acid) and total sugars in dry wines (addition of glucose). These findings can be explained by spectroscopic interferences that were also a subject of analysis in this work. In fact, ethanol, organic acids and other compounds, present in high concentrations in wine, can produce major interferences in the analysis for compounds such as volatile acid and sugars in dry wines, when their strong infrared absorption bands do not differ significantly from other abundant compounds.  相似文献   

12.
An automated at-line SPE–GC–MS system for the determination of micropollutants in aqueous samples, which is based on the PrepStation and uses large-volume on-column injections, has been redesigned. A cartridge made from stainless steel and polychlorotrifluoroethylene and a 2-needle system was constructed which allow the determination of micropollutants at the low ng/L level without interferences from impurities extracted from the septa of the vials or the commercial cartridges. No time-consuming pre-cleaning of the cartridges or septa is required. The SPE sample extract (300 μL) is transferred from the sample preparation module to the autosampler of the GC–MS and 50 or 100 μL are injected. The analytical characteristics of the integrated procedure such as analyte recovery (typically 80–105%) and repeatability (RSDs, 2–9%), were satisfactory. Several micropollutants were detected in (unfiltered) river water at the 0.2–400 ng/L level using full-scan MS acquisition. The system proved to be robust during the analysis of more than 100 tap and river water samples.  相似文献   

13.
The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity).The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance will also be examined.  相似文献   

14.
This is the first of two introductory papers on multivariate calibration. We show how precise quantitative chemical analysis is made possible even in 'dirty' sample types like biological tissue, by compensating for systematic interferences in the measured data. This drastically reduces the required sample preparation work, making high-speed, nonspecific instrument measurements possible. Multivariate calibration also allows various types of automatic error detection, improving reliability in chemical analysis.The present paper treats on a conceptual basis the following topics: Univariate vs. multivariate calibration, direct vs. indirect calibration and controlled vs. natural calibration. Some aspects of multivariate quantitative modelling is illustrated, and multiwavelength near infrared spectrometry is given as a practical example. The compromise between necessary complexity vs. danger of statistical overfitting is discussed.  相似文献   

15.
This paper reports use of a combination of Fourier-transform infrared (FTIR) spectroscopic imaging and desorption electrospray ionization linear ion-trap mass spectrometry (DESI MS) for characterization of counterfeit pharmaceutical tablets. The counterfeit artesunate antimalarial tablets were analyzed by both techniques. The results obtained revealed the ability of FTIR imaging in non-destructive micro-attenuated total reflection (ATR) mode to detect the distribution of all components in the tablet, the identities of which were confirmed by DESI MS. Chemical images of the tablets were obtained with high spatial resolution. The FTIR spectroscopic imaging method affords inherent chemical specificity with rapid acquisition of data. DESI MS enables high-sensitivity detection of trace organic compounds. Combination of these two orthogonal surface-characterization methods has great potential for detection and analysis of counterfeit tablets in the open air and without sample preparation.  相似文献   

16.
A novel multiwalled carbon nanotubes–polyaniline composite (MWCNTs–PANI) film coated platinum wire was fabricated through electrochemical deposition. The coating was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry and thermogravimetry. It was found that the coating was porous and had large specific area and adsorption capacity; in the composite MWCNTs and polyaniline interacted with each other and the film kept stable up to 320 °C. The as-made fiber was used for the headspace solid-phase microextraction (HS-SPME) of some phenolic compounds (i.e. 2-chlorophenol, 2,4-dichlorophenol, 2-methylphenol, 3-methylphenol, 2,6-dimethylphenol, 2-nitrophenol), followed by gas chromatographic analysis. The MWCNTs–PANI coating showed better analytical performance than PANI. Under the optimized conditions, the detection limits were 1.89–65.9 ng L−1, the relative standard deviations (RSDs) were 2.7–6.5% for six successive measurements with single fiber, the RSDs for fiber-to-fiber were 5.2–12.4%, the linear ranges exceeded two magnitudes with correlation coefficient above 0.992. The fiber could be used for more than 250 times without decrease of efficiency. The proposed method was successfully applied to the extraction and determination of phenolic compounds in water sample, and the recoveries were 87.7–111.5% for different analytes. In addition, the fiber also presented advantages of easy preparation and low cost. Therefore, it is a promising SPME fiber.  相似文献   

17.
Summary: The study of multilayer films has become an important issue, since every year improved materials are produced. They have to be optimally designed in order to enable the maintenance of aroma, taste and nutritional value of the goods. This is primarily achieved by the use of special laminated films, additives and oxygen barriers. In addition, ecological and economical factors force the industry forwards to create more environmental-friendly and cheaper films. In this study, two multilayer packaging films differing in the layer and barrier composition are examined with light microscopy (LM), transmission electron microscopy (TEM) and Fourier transformed infrared (FTIR) microspectroscopy: LM gives the number and the thickness of the layers, but there is no information about the chemical composition and the coatings. FTIR and Raman Spectroscopy enable the chemical characterization of the identified layers, but the lateral resolution is restricted in the µm range. TEM visualizes the important characteristics (coatings, filler particles) and enables the detection of inorganic fillers (EELS, EDX), but the organic components cannot be analyzed. Therefore, the use of complementary techniques is crucial in order to achieve a complete analysis of multilayer foils. Special attention was paid on the preparation procedure, since ultrathin sections are an important prerequisite for TEM observation and there is little known about the “perfect” preparation of multilayer films.  相似文献   

18.
针对光纤级高纯四氯化锗(99.999999%)中痕量含氢杂质吸收峰红外透过率检测(FTIR)用试样的采集,以及痕量金属杂质的电感耦合等离子体质谱法(ICP-MS)测定用试样的制备方法进行了系统研究。设计开发了用于检测痕量含氢杂质吸收峰红外透过率的样品采集实验装置,实现了含氢杂质(如—OH、—CH、HCl等)吸收峰的红外透过率在线连续测试,试样采集过程全密闭进行,避免了采样过程的二次污染,采样过程流程简短,操作简便;实验优选了在制备ICP-MS法测定痕量金属杂质用的试样过程中消除四氯化锗基体干扰、防止砷等易挥发杂质损失以及防止样品处理过程污染试样的制样方法,实现了试样制备过程二次污染源的有效控制,制样过程试剂消耗量少,制备时间短,待测元素无损失。  相似文献   

19.
Summary In chemical and pharmaceutical production plants process control is often performed by plant personal near the process (at-line). Alternatively, spectroscopic procedures like near infrared may be coupled to the process using in-line or on-line interfaces. When the analytical problem cannot be solved by these established approaches chromatographic techniques can be directly coupled to the production process. An application of chemical reaction monitoring which is difficult to perform is reported. The analytical problems are solved by HPLC and CE. Both techniques in the application presented need an on-line derivatization step prior to the analysis. Flow Injection Analysis (FIA) was applied for this sample preparation step. For the online coupling to the commercially available CE-instrument a special sample vial was developed. The application shows sufficient reproducibility and analysis speed for near real-time monitoring. of the process. Dedicated to Professor Dr. Heinz Engelhardt on the occasion of his 65th birthday.  相似文献   

20.
Hu Y  Li J  Li G 《Journal of separation science》2011,34(10):1190-1197
The preparation, characteristics and application of a sorptive stir bar coated with molecularly imprinted polymer (MIP) using triadimefon as the template molecule are described here. Raw glass capillary was coated with MIP through chemical bonding. The synthesis method was effective and reproducible with the batch-to-batch RSD within 7.8%. Scanning electron micrographs of the stir bar revealed a highly porous coating with average thickness of 15 μm. The synthesized stir bar was proved to be highly stable in most of the solvent for use. Extraction performance showed the fabricated stir bar has excellent molecular recognition abilities for triadimefon and the structure-related compounds, such as triadimenol, diniconazole, flutriafol, hexaconazole, tebuconazole, paclobutrazol and uniconazole, and thus can be applied for simultaneous determination of these triazole fungicides from complex samples by coupling with high-performance liquid chromatography. The variables that influence extraction were optimized with 10.0 μg/L standard solutions of triazole fungicides, and the analytical method was established for the determination of triazole fungicides in soil. The detection limits were in the range of 0.14-0.34 μg/L, and the recoveries were from 86.7 to 114.6% for spiked soil sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号