首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL−1, 1.0-500 ng mL−1, 1.0-500 U mL−1 and 3.0-500 U mL−1 with limits of detection of 0.68 ng mL−1, 0.95 ng mL−1, 0.99 U mL−1 and 2.30 U mL−1 at 3σ, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.  相似文献   

2.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

3.
A novel, sensitive electrochemical immunosensor for simultaneous determination of squamous cell carcinoma associated antigen (SCC-Ag) and carcinoembryonic antigen (CEA) for the combined diagnosis of cervical cancer was designed. The amplification strategy for electrochemical immunoassay was based on poly[3-(1,1′-dimethyl-4-piperidine-methylene) thiophene-2,5-diylchloride] (PDPMT-Cl) and functionalized mesoporous ferroferric oxide nanoparticles (Fe3O4 NPs). PDPMT-Cl dispersed in chitosan solution with enhanced electrical conductivity and solubility was used as matrices to immobilize the first antibodies. Different redox probes (thionine (Th) and ferrocenecarboxylic acid (Fca)) functionalized Fe3O4 NPs incubated with two kinds of secondary antibodies to fabricate the labels. Using an electrochemical analysis technique, two well-separated peaks were generated by Th and Fca, making the simultaneous detection of two analytes on the electrode possible. Under optimized conditions, this method showed wide linear ranges of three orders of magnitude with the detection limits of 4 pg mL−1 and 5 pg mL−1, respectively. The disposable immunosensor possessed excellent clinical value in cervical cancer screening as well as convenient point-of-care diagnostics.  相似文献   

4.
A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab1) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab2) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO2@Fe3O4 nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab2) through the Au–SH or Au–NH3+ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL−1 with a detection limit of 0.01 U mL−1. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from the commercialized electrochemiluminescent method.  相似文献   

5.
A new and disposable electrochemical immunosensor was designed for detection of alpha-fetoprotein (AFP), as a model analyte, with sensitivity enhancement based on enzyme-catalyzed silver deposition onto irregular-shaped gold nanoparticles (ISGNPs). The assay was carried out with a sandwich-type immunoassay protocol by using ISGNP-labeled anti-AFP antibodies conjugated with alkaline phosphatase (ALP–Ab2) as detection antibodies. The enzymatically catalytic deposition of silver on the electrode could be measured by stripping analysis in KCl solution due to the Ag/AgCl solid-state voltammetric process. Several labeling protocols including spherical gold nanoparticle-labeled ALP–Ab2 and ISGNP-labeled ALP–Ab2 were investigated for determination of AFP, and improved analytical properties were achieved with the ISGNP labeling. With the ISGNP labeling method, the effects of incubation time and incubation temperature for antigen-antibody reaction, and deposition time of silver on the current responses of the electrochemical immunosensors were also monitored. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range from 0.01 ng mL−1 to 200 ng mL−1 with a detection limit of 5.0 pg mL−1 AFP. The immunosensor displayed a good stability and acceptable reproducibility and accuracy. No significant differences at the 95% confidence level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of AFP.  相似文献   

6.
In this work, an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosensor using in situ generation of l-homocysteine (l-Hcys) for signal amplification was successfully constructed for detection of carcinoembryonic antigen (CEA). In the reaction of biological methylation, S-adenosyl-l-homocysteine hydrolase (SAHH) catalyzed the reversible hydrolysis of S-adenosyl-l-homocysteine (SAH) to produce l-Hcys, which was inducted into ECL system to construct the immunosensor for signal amplification in this work. Simultaneously, Gold and palladium nanoparticles functionalized multi-walled carbon nanotubes (Au-PdNPs@MWCNTs) were prepared, which were introduced to immobilize the secondary antibody (Ab2) and SAHH with high loading amount and good biological activity due to their improved surface area and excellent biocompatibility. Then the proposed ECL immunosensor was developed by a sandwich-type format using Au-PdNPs@MWCNTs-SAHH-Ab2 as tracer and graphene together with AuNPs as substrate. Besides the enhancement of Au-PdNPs, the enzymatic catalysis reaction also amplified the ECL signal dramatically, which was achieved by efficient catalysis of the SAHH towards the hydrolysis of SAH to generate improved amount of l-Hcys in situ. Furthermore, due to the special interaction between Au-PdNPs and -SH or -NH2 in l-Hcys, l-Hcys would gradually accumulate on the surface of the immunosensor, which greatly enhanced the concentration of l-Hcys on the immunosensor surface and further improved the ECL intensity. With the amplification factors above, a wide linear ranged from 0.1 pg mL−1 to 80 ng mL−1 was acquired with a relatively low detection limit of 33 fg mL−1 for CEA.  相似文献   

7.
A multiplexed electrochemical immunoassay method was developed for simultaneous ultrasensitive measurement of tumor markers based on electrochemical stripping analysis of silver nanoparticles (Ag NPs). The Ag NPs were deposited on a disposable immunosensor array with a reduction reaction catalyzed by nanogold labels. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. Through a sandwich-type immunoreaction, antibody-functionalized Au NPs were captured onto immunosensor surface to induce the silver deposition from a silver enhancer solution. The deposited Ag NPs could be directly measured by anodic stripping analysis in KCl solution. The catalytic deposition enhanced the analytical sensitivity for detection of protein markers. The interference of dissolved oxygen could be avoided as the detection was performed with positive stripping potential range. Using carcinoembryonic antigen and α-fetoprotein as model analytes, the proposed multiplexed immunoassay method showed wide linear ranges of three orders of magnitude with the detection limits down to 3.5 and 3.9 pg mL−1, respectively. The localized silver deposition, as well as the stripping detection process, eliminated completely the electrochemical cross talk between adjacent immunosensors. The immunosensor array exhibited acceptable reproducibility, stability and accuracy, showing a promising potential in multianalyte determination for clinical application.  相似文献   

8.
In this paper, a novel, low-cost electrochemiluminescence (ECL) immunosensor using core–shell Fe3O4–Au magnetic nanoparticles (AuMNPs) as the carriers of the primary antibody of carbohydrate antigen 125 (CA125) was designed. Graphene sheet (GS) with property of good conductivity and large surface area was a captivating candidate to amplify ECL signal. We successively synthesized functionalized GS by loading large amounts of quantum dots (QDs) onto the poly (diallyldimethyl-ammonium chloride) (PDDA) coated graphene sheet (P-GS@QDs) via self-assembly electrostatic reactions, which were used to label secondary antibodies. The ECL immunosensors coupled with a microfluidic strategy exhibited a wide detection range (0.005–50 U mL−1) and a low detection limit (1.2 mU mL−1) with the help of an external magnetic field to gather immunosensors. The method was evaluated with clinical serum sample, receiving good correlation with results from commercially available analytical procedure.  相似文献   

9.
In the presented work, a disposable immunosensor for the detection of testosterone, an endogenous steroid hormone, in bovine urine has been developed using screen-printed electrodes (SPEs). Due to concerns over the use of steroid hormones as growth promoters, the EU prohibits their use in food producing animals. Consequently, rigorous screening procedures have been implemented in all member states to detect the illegal administration of such compounds. Competitive immunoassays were developed, initially by enzyme linked immunosorbent assay (ELISA), and subsequently transferred to an electrochemical immunosensor format using disposable screen-printed carbon electrodes. Horseradish peroxidase (HRP) was the enzyme label of choice and chronoamperometric detection was carried out using a tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) substrate system, at +100 mV. The EC50 values obtained for the assay in buffer and urine gave relatively comparable results, 710 pg mL−1 and 960 pg mL−1, respectively. The linear range obtained for the assay in buffer extended from 0.03 ng mL−1 to 40 ng mL−1; while that in urine ranged from 0.03 ng mL−1 to 1.6 ng mL−1. The corresponding limits of detection (LOD) in buffer and urine were 26 pg mL−1 and 1.8 pg mL−1. Cross reactivity profiles of the antibody have been examined, with notable cross reactivities with 19-nortestosterone (11.6%) and boldenone (9.86%). Precision studies for the sensor demonstrated adequate reproducibility (CV < 13%, n = 3) and repeatability (CV < 9%, n = 3). Recovery data obtained showed good agreement between spiking studies and known concentrations of analyte. Sensors showed stability for 4 days at +4 °C. A sensitive, highly specific, inexpensive, disposable immunosensor, showing excellent overall performance for the detection of testosterone in bovine urine, has been developed.  相似文献   

10.
The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 U mL−1 with a coefficient 0.9986 and a detection limit of 0.64 U mL−1 at S/N = 3.  相似文献   

11.
A new kind of signal amplification strategy based on ferrocene (Fc) incorporated polystyrene spheres (PS-Fc) was proposed. The synthesized PS-Fc displayed narrow size distribution and good stability. PS-Fc was applied as label to develop immunosensors for prostate specific antigen (PSA) after the typical sandwich immunoreaction by linking anti-PSA antibody (Ab2) onto PS-Fc. After the fabrication of the immunosensor, tetrahydrofuran (THF) was dropped to dissolve PS and release the contained Fc for the following stripping voltammetric detection. PS-Fc as a new electrochemical label prevented the leakage of Fc and greatly amplified the immunosensor signal. In addition, the good biocompatibility of PS could maintain the bioactivity of the antibodies. The response current was linear to the logarithm of PSA concentration in the range from 0.01 ng mL−1 to 20 ng mL−1 with a detection limit of 1 pg mL−1. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results.  相似文献   

12.
A novel nonenzymatic sandwich-type electrochemical immunosensor has been developed to detect squamous cell carcinoma antigen (SCCA). Nitrogen-doped graphene sheet (N-GS) was used to increase capacity of capturing primary antibodies (Ab1). Carbon-supported Pd–Au binary nanoparticles (Pd–Au/C) were synthesized and used to label secondary antibodies (Ab2). The specific binding of SCCA and antibodies enabled a quantitative attachment of Pd–Au/C on the electrode surface. Electrocatalytic analysis showed that the prepared Pd–Au/C exhibit excellent electrocatalytic activity towards hydrogen peroxide (H2O2). We use current response of electrocatalytic labels Pd–Au/C to detect the concentration of SCCA. The unique nonenzymatic immunosensor exhibits a relatively wide linear range from 0.005 to 2 ng mL−1 and high sensitivity with a low detection limit of 1.7 pg mL−1. The immunsensor also shows good reproducibility (4.2%) and stability (5.8%), which makes it an enormous application prospect in clinical research.  相似文献   

13.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

14.
In this paper, a novel sandwich electrochemiluminescence (ECL) immunosensor was constructed by ferrocene for quenching Ag nanoparticles functionalized g-C3N4 (Ag@g-C3N4) emission. The prepared Ag@g-C3N4 had strong and stable ECL signals compared to pure g-C3N4 and primary antibody (Ab1) can be immobilized on Ag@g-C3N4 by adsorption of Ag nanoparticles. Ferrocene carboxylic acid (Fc-COOH) labeled secondary antibody was immobilized on Au doped mesoporous Al2O3 nanorods (Au@Al2O3–Fc-COOH@Ab2) as labels through adsorption ability of Au toward proteins. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed due to the ECL quenching of Ag@g-C3N4 by Au@Al2O3–Fc-COOH@Ab2. As a result, the change of ECL intensity has a direct relationship with the logarithm of CEA concentrations in the range of 1 pg mL−1–100 ng mL−1 with a detection limit of 0.35 pg mL−1 (S/N = 3). Additionally, the proposed immunosensor shows high specificity, good reproducibility, and long-term stability.  相似文献   

15.
A double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor was developed. As a proof-of-concept, a designed alkyne functionalized human IgG was used as a capture antibody and a HRP-labeled rabbit anti-goat IgG was used as signal antibody for the determination of the anti-human IgG using the sandwich model. The immunosensor was fabricated by electrochemically grafting a phenylazide on the surface of a glassy carbon electrode, and then, by coupling the alkyne functionalized human IgG with the phenylazide group through an electro-click chemistry in the presence of Cu(II). The amperometric measurement for the determination of the anti-human IgG was performed after the fabricated immunosensor was incubated with the target anti-human IgG and then with the HRP-labeled anti-goat IgG at −0.25 V in 0.10 M PBS (pH 7.0) containing 0.1 mM hydroquinone and 2.0 mM H2O2. The results showed that the increased current was linear with the logarithm of the concentration of the anti-human IgG in the range from 1.0 × 10−10 g mL−1 to 1.0 × 10−8 g mL−1 with a detection limit of 3 × 10−11 g mL−1. Furthermore, the feasibility of the double electrochemical covalent coupling method proposed in this work for fabricating the amperometric immunosensor array was explored. This work demonstrates that the double electrochemical covalent coupling method is a promising approach for the fabrication of the immunosensor and immunosensor array.  相似文献   

16.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

17.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

18.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

19.
Nano-montmorillonites belong to aluminosilicate clay minerals with innocuity, high specific surface area, ion exchange, and favorable adsorption property. Due to the excellent properties, montmorillonites can be used as labels for the electrochemical immunosensors. In this study, nano-montmorillonites were converted to sodium montmorillonites (Na-Mont) and further utilized for the immobilization of thionine (TH), horseradish peroxidase (HRP) and the secondary anti-zeranol antibody (Ab2). The modified particles, Na-Mont-TH-HRP-Ab2 were used as labels for immunosensors to detect zeranol. This protocol was used to prepare the immunosensor with the primary antibody (Ab1) immobilized onto the nanoporous gold films (NPG) modified glassy carbon electrode (GCE) surface. Within zeranol concentration range (0.01–12 ng mL−1), a linear calibration plot (Y = 0.4326 + 8.713 X, r = 0.9996) was obtained with a detection limit of 3 pg mL−1 under optimal conditions. The proposed immunosensor showed good reproducibility, selectivity, and stability. This new type of immunosensors with montmorillonites and NPG as labels may provide potential applications for the detection of zeranol.  相似文献   

20.
A highly sensitive disposable amperometric immunosensor based on the use of magnetic beads (MBs) is described for determination of Ara h 1, the major peanut allergen, in only 2 h. The approach uses a sandwich configuration involving selective capture and biotinylated detector antibodies and carboxylic acid-modified MBs (HOOC-MBs). The MBs bearing the immunoconjugates are captured by a magnet placed under the surface of a disposable screen-printed carbon electrode (SPCE) and the affinity reactions are monitored amperometrically at −0.20 V (vs a Ag pseudo-reference electrode) in the presence of hydroquinone (HQ) as electron transfer mediator and upon addition of H2O2 as the enzyme substrate. The developed immunosensor exhibits a wide range of linearity between 20.8 and 1000.0 ng mL−1 Ara h 1, a detection limit of 6.3 ng mL−1, a great selectivity, a good reproducibility with a RSD of 6.3% for six different immunosensors and a useful lifetime of 25 days. The usefulness of the immunosensor was demonstrated by determining Ara h 1 in different matrices (food extracts and saliva). The results correlated properly with those provided by a commercial ELISA method offering a reliable and promising analytical screening tool in the development of user-friendly devices for on-site determination of Ara h 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号