首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 μM to 15 mM with a detection limit of 11 μM at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.  相似文献   

2.
The propagation of intercellular calcium signals provides a mechanism to coordinate cell population activity, which is essential for regulating cell behavior and organ development. However, existing analytical methods are difficult to realize localized chemical stimulation of a single cell among a population of cells that are in close contact with one another for studying the propagation of calcium wave. In this work, a microfluidic method is presented for the analysis of contact-dependent propagation of intercellular calcium wave induced by extracellular ATP using multiple laminar flows. Adjacent cells were seeded ∼300 μm downstream the intersection of a Y-shaped microchannel with negative pressure pulses. Consequently, the lateral diffusion distance of the chemical at cell locations was limited to ∼26 μm with a total flow rate of 20 μL min−1, which prevented the interference of diffusion-induced cellular responses. Localized stimulation of the target cell with ATP induced the propagation of intercellular calcium wave among the cell population. In addition, studies on the spread of intercellular calcium wave under octanol inhibition allowed us to characterize the gap junction mediated cell–cell communication. Thus, this novel device will provide a versatile platform for intercellular signal transduction studies and high throughput drug screening.  相似文献   

3.
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. In this study, we report an integrated microfluidic chip designed for the immunodetection of prostate-specific antigens (PSAs). The microfluidic chip is based on the three-dimensional structure of quartz capillaries. The outlet channel extends to 1.8 cm, effectively facilitating the generation of uniform droplets ranging in size from 3 to 50 μm. Furthermore, we successfully immobilized the captured antibodies onto the surface of magnetic beads using an activator, and we constructed an immunosandwich complex by employing biotinylated antibodies. A key feature of this microfluidic chip is its integration of microfluidic droplet technology advantages, such as high-throughput parallelism, enzymatic signal amplification, and small droplet size. This integration results in an exceptionally sensitive PSA detection capability, with the detection limit reduced to 7.00 ± 0.62 pg/mL.  相似文献   

4.
Scanning electrochemical microscopy (SECM) and scanning chemiluminescence microscopy (SCLM) were used for imaging an enzyme chip with spatially-addressed spots for glucose oxidase (GOD) and uricase microspots. For the SECM imaging, hydrogen peroxide generated from the GOD and/or uricase spots was directly oxidized at the tip microelectrode in a solution containing glucose and/or uric acid (electrochemical (EC) detection). For the SCLM imaging, a tapered glass capillary (i.d. of 1∼2 μm) filled with luminol and horseradish peroxidase (HRP) was used as the scanning probe for generating the chemiluminescence (CL). The inner solution was injected from the capillary tip at 78 pl s−1 while scanning above the enzyme-immobilized chip. The CL generated when the capillary tip was scanned above the enzyme spots was detected using a photon-counter (CL detection). Two-dimensional mapping of the oxidation current and photon-counting intensity against the tip position affords images of which their contrast reflects the activity of the immobilized GOD and uricase. For both the EC and CL detections, the signal responses were plotted as a function of the glucose and uric acid concentrations in solution. The sensitivities for the EC and CL detection were found to be comparable.  相似文献   

5.
Wang Y  Luo J  Chen H  He Q  Gan N  Li T 《Analytica chimica acta》2008,625(2):180-187
A novel chip-based flow injection analysis (FIA) system has been developed for automatic, rapid and selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The system is composed of a polycarbonate (PC) microfluidic chip with an electrochemical detector (ED), a gravity pump, and an automatic sample loading and injection unit. The selectivity of the ED was improved by modification of the gold working microelectrode, which was fabricated on the PC chip by UV-directed electroless gold plating, with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA). Postplating treatment methods for cleaning the surface of electroless gold microelectrodes were investigated to ensure the formation of high quality SAMs. The effects of detection potential, flow rate, and sampling volume on the performance of the chip-based FIA system were studied. Under optimum conditions, a detection limit of 74 nmol L−1 for DA was achieved at the sample throughput rate of 180 h−1. A RSD of 0.9% for peak heights was observed for 19 runs of a 100 μmol L−1 DA solution. Interference-free determination of DA could be conducted if the concentration ratio of AA–DA was no more than 10.  相似文献   

6.
A procedure is proposed in which the determination of hydroquinone using a flow injection system with electrochemical detection is described. Size and coefficient of variation of the signal are optimised by a desirability function and a central composite design. The robustness of the optimum reached in the optimisation step is evaluated by means a Plackett-Burman design. The optimised FIA system is able to determine hydroquinone with a minimum detectable net concentration of 10 μg l−1 with a false positive probability of 0.05 and a false negative probability less than 0.05. In samples of bleaching cream, the proposed procedure has a recovery of 102.2% with standard deviation of 4.4% and a relative error of 6.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号