首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L−1, respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L−1 with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME.  相似文献   

2.
Novel solid-phase microextraction fibers were prepared based on sol–gel technique. Commonly used fused silica substrate was replaced by titanium wire which provided high strength and longer fiber life cycle. Titanium isopropoxide was employed as the precursor which provides a sol solution containing Ti–OH groups and shows more tendencies to the molecularly similar group on the substrate. Three different polymers, poly (dimethylsiloxane) (PDMS), poly(ethylenepropyleneglycol)-monobutyl ether (Ucon) and polyethylene glycol (PEG) were employed as coating polymer in preparing three different fibers. The applicability of these fibers was assessed for the headspace SPME (HS-SPME) of benzene, toluene, ethylbenzene and xylenes (BTEX) from water sample followed by gas chromatography–mass spectrometry (GC–MS). Effects of different parameters such as fiber coating type, extraction condition, desorption condition were investigated and optimized. Under the optimized conditions, LODs and LOQs of 0.75–10 μg L−1 (S/N = 3) and 1–20 μg L−1 (S/N = 10) were respectively obtained. The method showed linearity in the range of 10–25,000 μg L−1 with correlation coefficient of >0.99. The relative standard deviation was less than 8%.  相似文献   

3.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

4.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

5.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

6.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

7.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

8.
In this work, a rapid, simple and efficient homogeneous liquid–liquid microextraction via flotation assistance (HLLME-FA) method was developed based on applying low density organic solvents without no centrifugation. For the first time, a special extraction cell was designed to facilitate collection of the low-density solvent extraction in the determination of four polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). The effect of different variables on the extraction efficiency was studied simultaneously using experimental design. The variables of interest in the HLLME-FA were selected as extraction and homogeneous solvent volumes, ionic strength and extraction time. Response surface methodology (RSM) was applied to investigate the optimum conditions of all the variables. Using optimized variables in the extraction process, for all target PAHs, the detection limits, the precisions and the linearity of the method were found in the range of 14–41 μg L−1, 3.7–10.3% (RSD, n = 3) and 50–1000 μg L−1, respectively. The proposed method has been successfully applied to the analysis of four target PAHs in the water samples, and satisfactory results were obtained.  相似文献   

9.
A sample pretreatment method for the determination of 18 chlorophenols (CPs) in aqueous samples by derivatization liquid-phase microextraction (LPME) was investigated using gas chromatography–mass spectrometry. Derivatization reagent was spiked into the extraction solvent to combine derivatization and extraction into one step. High sensitivity of 18 CPs derivatives could be achieved after optimization of several parameters such as extraction solvent, percentage of derivatization reagent, extraction time, pH, and ionic strength. The results from the optimal method showed that calibration ranging from 0.5 to 500 μg L−1 could be achieved with the RSDs between 1.75% and 9.39%, and the limits of detection (LOD) are ranging from 0.01 to 0.12 μg L−1 for the CPs. Moreover, the proposed LPME method was compared with solid-phase microextraction (SPME) coupled with on-fiber derivatization technique. The results suggested that using both methods are quite agreeable. Furthermore, the recoveries of LPME evaluated by spiked environmental samples ranged from 87.9% (3,5-DCP) to 114.7% (2,3,5,6-TeCP), and environmental water samples collected from the Pearl River were analyzed with the optimized LPME method, the concentrations of 18 CPs ranged from 0.0237 μg L−1 (3,5-DCP) to 0.3623 μg L−1 (2,3,6-TCP).  相似文献   

10.
The application of sulfur microparticles as efficient adsorbents for the solid-phase extraction (SPE) and determination of trace amounts of 10 polycyclic aromatic hydrocarbons (PAHs) was investigated in sea water and wastewater samples using high performance liquid chromatography coupled with an ultraviolet detector (HPLC–UV). Parameters influencing the preconcentration of PAHs such as the amount of sulfur, solution flow rate and volume, elution solvent, type and concentration of organic modifier, and salt effect were examined. The results showed that at a flow rate of 10 mL min−1 for the sample solutions (100 mL), the PAHs could be adsorbed on the sulfur microparticles and then eluted by 2.0 mL of acetonitrile. For HPLC–UV analysis of extracted PAHs, the calibration curves were linear in the range of 0.05–80.0 μg L−1; the coefficients of determinations (r2) were between 0.9934 and 0.9995. The relative standard deviations (RSDs) for eight replicates at two concentration levels (0.5 and 4.0 μg L−1) of PAHs were lower than 7.3%, under optimized conditions. The limits of detection (LODs, <!-- no-mfc -->S/N<!-- /no-mfc --> = 3) of the proposed method for the studied PAHs were 0.007–0.048 μg L−1. The recoveries of spiked PAHs (0.5 and 4 μg L−1) in the wastewater and sea water samples ranged from 78% to 108%. The simplicity of experimental procedure, high extraction efficiency, short sample analysis, and using of low cost sorbent demonstrate the potential of this approach for routine trace PAH analysis in water and wastewater samples.  相似文献   

11.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   

12.
An improved multiple co-polymerization technique was developed to prepare a novel molecularly imprinted polymer (MIP)-coated solid-phase microextraction (SPME) fiber with propranolol as template. Investigation was performed for the characteristics and application of the fibers. The MIP coating was highly crosslinked and porous with the average thickness of only 25.0 μm. Consequently, the adsorption and desorption of β-blockers within the MIP coating could be achieved quickly. The specific selectivity was discovered with the MIP-coated fibers to propranolol and its structural analogues such as atenolol, pindolol, and alprenolol. In contrast, only non-specific adsorption could be shown with the non-imprinted polymer (NIP)-coated fibers, and the extraction efficiencies of propranolol and pindolol with the MIP-coated fibers were higher markedly than that with the commercial SPME fibers. A MIP-coated SPME coupled with high-performance liquid chromatography (HPLC) method for propranolol and pindolol determination was developed under the optimized extraction conditions. Linear ranges for propranolol and pindolol were 20–1000 μg L−1 and detection limits were 3.8 and 6.9 μg L−1, respectively. Propranolol and pindolol in the spiked human urine and plasma samples, extracted with organic solvent firstly, could be simultaneous monitored with satisfactory recoveries through this method.  相似文献   

13.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

14.
A method based on solid-phase microextraction (SPME) followed by on-fiber derivatization and gas chromatography–mass spectrometry detection (GC–MS) for determination of phenol in air was developed. Three different types of SPME fibers, polar and non-polar poly(dimethylsiloxane) (PDMS) and polyethylene glycol (PEG) were synthesized using sol–gel technology and their feasibility to the sampling of phenol were investigated. Different derivatization reagents for post on-fiber derivatization of phenol were studied. Important parameters influencing the extraction and derivatization process such as type of fiber coating, type and volume of derivatizing reagent, derivatization time and temperature, extraction time, and desorption conditions were investigated and optimized. The developed method is rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. Under the optimized conditions, the detection limit of the method was 5 ng L−1 using selected ion monitoring (SIM) mode. The inter-day and intra-day precisions of the developed method under optimized conditions were below 10%, and the method shows linearity in the range of 20 ng L−1 to 500 μg L−1with the correlation coefficient of >0.99. The optimized method was applied to the sampling of phenol from some biologics production areas. The compared results obtained using current and standard methods were shown to be satisfactory.  相似文献   

15.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

16.
In this work a molecularly imprinted polymer was developed as a selective sorbent for extraction of loratadine (as a model) in complex matrices followed by miniaturized homogeneous liquid–liquid extraction (MHLLE) for the first time. The molecularly imprinted polymer (MIP) which is based on loratadine as the template was synthesized successfully by precipitation polymerization and was used as a selective sorbent. This technique was applied for preconcentration, sample preparation, and determination of loratadine using high performance liquid chromatography-photo diode array detection (HPLC-PDA). Optimization of various parameters affecting molecular imprinted solid phase extraction (MISPE), such as pH of adsorption, composition and volume of eluent, adsorption and desorption times were investigated. Besides, in the subsequent stage (MHLLE) the type and volume of extraction solvent, sodium hydroxide amount, surfactant concentration, and extraction time were investigated and optimized. Under the optimal condition, maximum enrichment capacity and Langmuir constant were 91 mg g−1 and 0.014 L mg−1, respectively. Furthermore, enrichment factor and extraction recovery of MIP-MHLLE method were 30 and 90%, respectively. The LOD of the proposed method was 0.2 μg L−1 and a linear dynamic range of 1–1000 μg L−1 was obtained with correlation coefficient of greater than 0.998. The present method was applied for extraction and determination of loratadine in plasma and urine samples in μg L−1 levels and satisfactory results were achieved (RSD <8% based on three replicate measurements).  相似文献   

17.
A gas chromatography–mass spectrometric (GC–MS) method has been established for the determination of hydrazine in drinking water and surface water. This method is based on the derivatization of hydrazine with ortho-phthalaldehyde (OPA) in water. The following optimum reaction conditions were established: reagent dosage, 40 mg mL−1 of OPA; pH 2; reaction for 20 min at 70 °C. The organic derivative was extracted with methylene chloride and then measured by GC–MS. Under the established condition, the detection and the quantification limits were 0.002 μg L−1 and 0.007 μg L−1 by using 5.0-mL of surface water or drinking water, respectively. The calibration curve showed good linearity with r2 = 0.9991 (for working range of 0.05–100 μg L−1) and the accuracy was in a range of 95–106%, and the precision of the assay was less than 13% in water. Hydrazine was detected in a concentration range of 0.05–0.14 μg L−1 in 2 samples of 10 raw drinking water samples and in a concentration range of 0.09–0.55 μg L−1 in 4 samples of 10 treated drinking water samples.  相似文献   

18.
A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L−1 and the limits of quantification (LOQ) were 1–4 μg L−1 under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L−1 were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R2 = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies for the selected drugs with various diamagnetic properties.  相似文献   

19.
This work presents a new methodology to quantify ethyl carbamate (EC) in fortified wines. The presented approach combines the microextraction by packed sorbent (MEPS), using a hand-held automated analytical syringe, with one-dimensional gas chromatography coupled with mass spectrometry detection (GC–MS). The performance of different MEPS sorbent materials was tested, namely SIL, C2, C8, C18, and M1. Also, several extraction solvents and the matrix effect were evaluated. Experimental data showed that C8 and dichloromethane were the best sorbent/solvent pair to extract EC. Concerning solvent and sample volumes optimization used in MEPS extraction an experimental design (DoE) was carried out. The best extraction yield was achieved passing 300 μL of sample and 100 μL of dichloromethane. The method validation was performed using a matrix-matched calibration using both sweet and dry fortified wines, to minimize the matrix effect. The proposed methodology presented good linearity (R2 = 0.9999) and high sensitivity, with quite low limits of detection (LOD) and quantification (LOQ), 1.5 μg L−1 and 4.5 μg L−1, respectively. The recoveries varied between 97% and 106%, while the method precision (repeatability and reproducibility) was lower than 7%. The applicability of the methodology was confirmed through the analysis of 16 fortified wines, with values ranging between 7.3 and 206 μg L−1. All chromatograms showed good peak resolution, confirming its selectivity. The developed MEPS/GC–MS methodology arises as an important tool to quantify EC in fortified wines, combining efficiency and effectiveness, with simpler, faster and affordable analytical procedures that provide great sensitivity without using sophisticated and expensive equipment.  相似文献   

20.
Two simple analytical methods for the simultaneous determination and quantification of benzotrifluoride and eight chlorinated, amino and nitro benzotrifluoride derivatives in groundwater are proposed. Benzotrifluoride, 4-chlorobenzotrifluoride, 2,4-dichlorobenzotrifluoride and 3,4-dichlorobenzotrifluoride, were extracted by Purge-and-Trap on the basis of their volatile properties, while 3-aminobenzotrifluoride, 4-nitrobenzotrifluoride, 3-amino-4-chlorobenzotrifluoride, 3-nitro-4-chlorobenzotrifluoride and 4-chloro-3,5-dinitrobenzotrifluoride extractions were done with an automated SPE system. The analytical separations and detections were performed with two different GC systems, both equipped with single quadrupole mass spectrometer as detector. The LOD ranges for the two methods were 0.002–0.005 μg L−1 and 0.01–0.07 μg L−1, respectively. Both extraction methods were developed using spiked Milli-Q water and were then demonstrated with groundwater samples collected during autumn 2008. The areas of groundwater collection were polluted due to an episode of improper industrial soil disposal and consequent leakage of aliphatic and aromatic, fluorinated chemicals into the groundwater. This work eventually revealed the presence of several benzotrifluoride compounds most of them, like dichloro- and amino-derivatives, never been reported as environmental contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号