首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this study, we reported a convenient label-free fluorescence nanosensor for rapid detection of acid phosphatase on the basis of aggregation-caused quenching (ACQ) and enzymolysis approach. The selectivity nanosensor was based on the fluorescence “turn off–on” mode, which possessed high sensitivity features. The original strong fluorescence intensity of CuInS2 QDs was quenched by sodium hexametaphosphate (NaPO3)6. The high efficiency of the quenching was caused by the non-covalent binding of positively charged CuInS2 QDs to the negatively charged (NaPO3)6 through electrostatic interactions, aggregating to form a CuInS2 QDs/(NaPO3)6 complex. Adding acid phosphatase caused intense fluorescence of CuInS2 QDs/(NaPO3)6 to be recovered, and this was because of enzymolysis. (NaPO3)6 was hydrolyzed into small fragments and the high negative charge density decreased, which would weaken the strong electrostatic interactions. As a result, the quenched fluorescence “turned on”. Under the optimum conditions, there was a good linear relationship between I/I0 (I and I0 were the fluorescence intensity of CuInS2 QDs/(NaPO3)6 system in the presence and absence of acid phosphatase, respectively) and acid phosphatase concentration in the range of 75–1500 nU mL−1 with the detection limit of 9.02 nU mL−1. The proposed nanosensor had been utilized to detect and accurately quantify acid phosphatase in human serum samples with satisfactory results.  相似文献   

2.
3.
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL−1 by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.  相似文献   

4.
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.  相似文献   

5.
We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO3 over a concentration range from 1.0 × 10−8 to 1.0 × 10−5 mol L−1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L−1. Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.  相似文献   

6.
In this study, a porous polypropylene frit was coated with polydimethylsiloxane (PDMS) as extraction medium, based on the home-made PDMS-frit, a rapid, simple and sensitive sorptive extraction method was established for analysis of potential biomarkers of lung cancer (hexanal and heptanal) in human serum samples. In the method, derivatization and extraction occurred simultaneously on the PDMS-frit, then the loaded frit was ultrasonically desorbed in acetonitrile. Polymerization, derivatization–extraction and desorption conditions were optimized. Under the optimal conditions, satisfactory results were gained, a wide linear application range was obtained in the range of 0.002–5.0 μmol L−1 (R > 0.997) for two aldehydes, the detection limits (S N−1 = 3) were 0.5 nmol L−1 for hexanal and 0.4 nmol L−1 for heptanal. The relative standard deviations (RSDs, n = 5) of the method were below 7.9% and the recoveries were above 72.7% for the spiked serum. All these results hint that the proposed method is potential for disease markers analysis in complex biological samples.  相似文献   

7.
Herein, high quality DNA-CuInS2 QDs are facilely synthesized through a one-pot hydrothermal method with fluorescence quantum yield as high as 23.4%, and the strongly fluorescent DNA-CuInS2 QDs have been utilized as a novel fluorescent biosensor for label-free and ultrasensitive detection of anthrax lethal factor DNA. L-Cysteine (L-Cys) and a specific-sequence DNA are used as co-ligands to stabilize the CuInS2 QDs. The specific-sequence DNA consists of two domains: phosphorothiolates domain (sulfur-containing variants of the usual phosphodiester backbone) controls the nanocrystal passivation and serves as a ligand, and the functional domain (non-phosphorothioates) controls the biorecognition. The as-prepared DNA-CuInS2 QDs have high stability, good water-solubility and low toxicity. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I0 (I0 is the original fluorescence intensity of DNA-CuInS2 QDs, and I is the fluorescence intensity of DNA-CuInS2 QDs/GO with the addition of various concentrations of anthrax lethal factor DNA) and the concentration of anthrax lethal factor DNA in the range of 0.029–0.733 nmol L−1 with a detection limit of 0.013 nmol L−1. The proposed method has been successfully applied to the determination of anthrax lethal factor DNA sequence in human serum samples with satisfactory results. Because of low toxicity and fine biocompatibility, DNA-CuInS2 QDs also hold potential applications in bioimaging.  相似文献   

8.
Li J  Xu M  Huang H  Zhou J  Abdel-Halimb ES  Zhang JR  Zhu JJ 《Talanta》2011,85(4):2113-2120
A novel competitive electrochemical cytosensor was reported by using aptamer (Apt)-quantum dots (Qdots) conjugates as a platform for tumor cell recognition and detection. The complementary DNA (cDNA), aptamer and Qdots could be assembled to the gold electrode surface. When the target cells existed, they could compete with cDNA to bind with Apt-Qdots conjugates based on the specific recognition of aptamer to MUC1 protein overexpressed on the cell surface, which resulted in the denaturation of double-stranded DNA structure and the release of the Apt-Qdots conjugates from the electrode. Electrochemical stripping measurement was then employed to determine the Cd2+ concentration in Qdots left at the electrode. The peak current was inversely proportional to the logarithmic value of cell concentration ranging from 1.0 × 102 to 1.0 × 106 cells mL−1 with a detection limit of 100 cells mL−1. Meanwhile, the recognition of aptamer to the target cells could be clearly observed through the strong fluorescence from Qdots. This is an example of the combination of aptamer and nanoparticles for the application of cell analysis, which is essential to cancer diagnosis and therapy.  相似文献   

9.
Reaction of formaldehyde with amino acids followed by oxidation with hydrogen peroxide to produce a fluorophore Norharman product is well known and was used for the spectrofluorimetric determination of l-tryptophan (Trp). This study aimed to use graphene oxide (GO) to enhance the selectivity and sensitivity of Trp in presence of other amino acids and possible interfering compounds. Different parameters such as pH, temperature, incubation time, and concentrations of formaldehyde, H2O2 and GO were studied to optimize the condition of determination. Experimental data showed that the maximum fluorescence intensity was achieved in pH 7.0–9.0 phosphate buffer mixed with 7–10% (v/v) formaldehyde and 1–2% (v/v) H2O2 as oxidizing agent at 60 ?C for 1 h. On the basis of calibration curve of various concentrations of Trp in the presence of 20 μg mL−1 GO, the lower limit of detection (LOD) of Trp was determined as 0.092 nmol mL−1 and the lower limit of quantification (LOQ) was 0.3 nmol mL−1. The selectivity of Trp in presence of other amino acids and possible interfering compounds were studied with and without GO. The data obtained after inner filter effect corrections revealed that the selectivity of Trp in presence of amino acids and other possible interfering agents was improved in the range of 76–96%, compared with that in absence of GO. The enhancement of selectivity in the presence of GO indicates that the Trp and other amino acid and possible interfering compounds were adsorbed by GO, and the selective uptaking of Trp-by the reaction with formaldehyde followed by oxidation with H2O2 at 60 ?C with high selectivity and sensitivity was achieved successfully.  相似文献   

10.
A simple and sensitive method for the determination of nanomolar levels of hydrogen peroxide (H2O2) in seawater has been developed and validated. This method is based on the reduction of H2O2 by ferrous iron in acid solution to yield hydroxyl radical (OH) which reacts with benzene to produce phenol. Phenol is separated from the reaction mixture by reversed phase high performance liquid chromatography and its fluorescence intensity signals were measured at excitation and emission of 270 and 298 nm, respectively. Under optimum conditions, the calibration curve exhibited linearity in the range of (0-50) × 103 nmol L−1 H2O2. The relative standard deviations for five replicate measurements of 500 and 50 nmol L−1 H2O2 are 1.9 and 2.4%, respectively. The detection limit for H2O2, defined as three times the standard deviation of the lowest standard solution (5 nmol L−1 H2O2) in seawater is 4 nmol L−1. Interference of nitrite ion (NO2) on the fluorescence intensity of phenol was also investigated. The result indicated that the addition of 10 μmol L−1 NO2 to seawater samples showed no significant interference, although, the addition of 50 μmol L−1 NO2 to the seawater samples decreases the fluorescence intensity signals of phenol by almost 40%. Intercomparison of this method with well-accepted (p-hydroxyphenyl) acetic acid (POHPAA)-FIA method shows excellent agreement. The proposed method has been applied on-board analysis of H2O2 in Seto Inland seawater samples.  相似文献   

11.
In this paper, the electrogenerated chemiluminescence (ECL) from thiol-capped CdTe quantum dots (QDs) was reported. The ECL emission was occurred at −1.1 V and reached a maximum value at −2.4 V when the potential was cycled between 0.0 and −2.5 V. The reduced species of CdTe QDs could react with the coreactants to produce the ECL emission. The CdTe QD concentration (6.64 × 10−7 mol L−1) of ECL is lower than that (1.0 × 10−3 mol L−1) of chemiluminescence (CL). Based on the enhancement of light emission from thiol-capped CdTe QDs by H2O2 in the negative electrode potential, a novel method for the determination of H2O2 was developed. The light intensity was linearly proportional to the concentration of H2O2 between 2.0 × 10−7 and 1.0 × 10−5 mol L−1 with a detection limit of 6.0 × 10−8 mol L−1. Compared with most of previous reports, the proposed method has higher sensitivity for the determination of H2O2. In addition, the ECL spectrum of thiol-capped CdTe QDs exhibited a peak at around 620 nm, which was substantially red shifted from the photoluminescence (PL) spectrum, suggesting the surface states play an important role in this ECL process.  相似文献   

12.
A simple extraction method for the analysis of PGE2 and PGF in gonad samples from Atlantic cod and further quantification by using liquid chromatography–tandem mass spectrometry is proposed. The evaluation of the best solvent extraction conditions and the analytical performance parameters are reported. The method was highly selective for both prostaglandins and the calibration curves, based on the internal standard method, were linear between 5 and 1000 ng mL−1 for PGE2 and PGF, with limits of detection of 1 ng mL−1 and 1.5 ng mL−1 and recovery values of 99.999 ± 0.002 and 99.967 ± 0.023 respectively. The homogenization of samples using liquid nitrogen combined with the developed extraction protocol can be implemented in different types of biological tissues.  相似文献   

13.
Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb3+) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H2O2 and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L−1 at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L−1 to 2.56 mmol L−1 in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H2O2 in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H2O2 with high sensitivity and precision.  相似文献   

14.
A procedure for the extraction of free amino acids was applied to isolate S-methylmethionine (SMM) from late harvest Petit Manseng grapes. Grapes were destemmed and crushed, and the obtained clarified must was percolated through cation-exchange resins (Dowex 50 WX4-100). The retained compounds were eluted with ammonia solution and the extract was finally concentrated. Taking into account the potential DMS (PDMS using heat-alkaline treatment assay) of the initial grape juice used (51.5 nmol mL−1) and the concentration factor of the extract (17.9-fold), the PDMS of the final extract (678 nmol mL−1) gave an overall recovery of 73.5% for juice SMM. This compound was identified and quantified (484.5 nmol mL−1 relatively to [2H3]-SMM used as internal standard) by its selective detection in this extract without derivatization by MALDI-TOF-MS using instrumentation and procedures previously reported to analyze SMM in complex natural extracts. SMM and 22 other amino acids in the initial must and in the final SMM extract were also determined using a Biochrom 30 amino acid analyser with post-column ninhydrin derivatization. SMM peak identification and quantification (401.2 nmol mL−1 relatively to norleucine used as internal standard) were carried out by comparison with commercial SMM.  相似文献   

15.
An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB–GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔEp) as 0.058 V in 0.1 mol L−1 pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB–GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s−1 and the diffusional coefficient (D) as 3.45 × 10−4 cm2 s−1, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L−1 with the detection limit as 5.6 nmol L−1 (3σ). The coexisting substances exhibited no interference and PMB–GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.  相似文献   

16.
In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose–response curves with IC50 values of 5 μg L−1 and 1.1 μg L−1 and dynamic ranges of 0.52–30 μg L−1 and 0.13–10 μg L−1 were obtained, respectively. Recovery was 92.6–106.5% for 5 types of water samples like bottled water, tap water, surface water and seawater using only filtration as sample pretreatment.  相似文献   

17.
An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10 μg mL−1 (R2 = 0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04 μg mL−1 (n = 3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL−1 of naproxen was 3% (n = 5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.  相似文献   

18.
The interaction of colloidal TiO2 nanoparticles with calf thymus-DNA was studied by using absorption, FT-IR, steady state and time resolved fluorescence spectroscopic techniques. The apparent association constant has been deduced (Kapp = 2.85 × 103 M−1) from the absorption spectral changes of the DNA-colloidal TiO2 nanoparticles using the Benesi–Hildebrand equation. Addition of colloidal TiO2 nanoparticles quenched the fluorescence of EtBr–DNA. The number of binding sites (n = 0.97) and the apparent binding constant (K = 6.68 × 103 M−1) were calculated from relevant fluorescence quenching data. The quenching, through a static mechanism, was confirmed by time resolved fluorescence spectroscopy.  相似文献   

19.
In this study, thioglycolic acid capped-CdTe quantum dots (QDs) were modified by polyethylenimine (PEI), and then combined with fluorescein isothiocyanate (FITC) to fabricate FITC–CdTe conjugates. The self-assembly of FITC, CdTe and PEI was ascribed to electrostatic interactions in aqueous solution. The resulting conjugates were developed toward two routes. In route one, ratiometric photoluminescence (PL) intensity of conjugates (IFITC/IQDs) was almost linear toward pH from 5.3 to 8.7, and a ratiometric PL sensor of pH was favorable obtained. In route two, firstly added S2− induced remarkable quenching of QDs PL peak (at the “OFF” state), which was restored due to following addition of Cd2+ (at the “ON” state). In the conjugates, successive introduction of S2− and Cd2+ hardly influenced on FITC PL peaks. According to this PL “OFF-ON” mode, a ratiometric PL method for the detection of Cd2+ was achieved. Experimental results confirmed that the IFITC/IQDs exhibited near linear proportion toward Cd2+ concentration in the range from 0.1 to 15 μM, and the limit of detection was 12 nM. Interferential experiments adequately testified that the proposed sensors of pH and Cd2+ were practicable in real samples and complex systems. In comparison with conventional analytical techniques, the ratiometric PL method was simple, rapid, economic and highly selective.  相似文献   

20.
Small molecules or analytes present at low concentrations are difficult to detect directly using conventional surface plasmon resonance (SPR) techniques because only small changes in the refractive index of the medium are typically induced by the binding of these analytes. Here, we present an amplification technique using core–shell Fe3O4@Au magnetic nanoparticles (MNPs) for an SPR bioassay. To evaluate this amplification effect, a novel SPR sensor based on a sandwich immunoassay was developed to detect α-fetoprotein (AFP) by immobilizing a primary AFP antibody (Ab1) on the surface of a 3-mercapto-1-propanesulfonate/chitosan-ferrocene/Au NP (MPS/CS-Fc/Au NP) film employing Fe3O4@Au–AFP secondary antibody conjugates (Fe3O4@Au–Ab2) as the amplification reagent. The stepwise fabrication of the biosensor was characterized using UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. A calibration curve of Fe3O4@Au–Ab2 conjugates amplification for AFP detection was obtained to yield a correlation in the range of 1.0–200.0 ng mL−1 with a detection limit of 0.65 ng mL−1, and a significant increase in sensitivity was therefore afforded through the use of Fe3O4@Au–Ab2 conjugates as an amplifier. This magnetic separation and amplification strategy has great potential for the detection of other biomolecules of interest with low interference and high sensitivity by changing the antibody label used in the Fe3O4@Au–antibody conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号