首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecularly imprinted polymers (MIPs) were prepared for adenosine-5′-monophosphate (AMP), a substrate of AMP-activated protein kinase. The template molecule was formed by the vinylphenylboronate diester of adenosine on which 5′-free hydroxide was protected by tert-butyldimethylsilyl group in order to mimic the steric hindrance of the phosphate moiety of AMP. Molecular imprinting was performed by complexing acrylamide and the template in a highly cross-linked polymer. MIPs were tested in batch experiments with aqueous samples of nucleotides and a number of parameters were investigated. The use of tetrabutylammonium hydroxide (TBAH) was necessary to obtain a rebinding of nucleotides on MIP. The adsorption of AMP was optimal in 5 mM ammonium acetate buffer solution pH 9.5 for 30 min, with 30 mM of TBAH. The imprinted polymer was selective for AMP towards others nucleotides or deoxi analogues.  相似文献   

2.
Molecularly imprinted polymers (MIPs) selective for lysozyme were prepared on SPR sensor chips by radical co-polymerization with acrylic acid and N,N′-methylenebisacrylamide. Gold-coated SPR sensor chips were modified with N,N′-bis(acryloyl)cystamine, on which MIP thin films were covalently conjugated. The presence of NaCl during the polymerization and the re-binding tests affected the selectivity and the optimization of NaCl concentration in the pre-polymerization mixture and the re-binding buffer could enhance the selectivity in the target protein sensing. When the lysozyme-imprinted polymer thin films were prepared in the presence of 40 mM NaCl, the selectivity factor (target protein bound/reference protein bound) of MIP in the re-binding buffer containing 20 mM NaCl was 9.8, meanwhile, that of MIP in the re-binding buffer without NaCl was 1.2. A combination of SPR sensing technology with protein-imprinted thin films is a promising tool for the construction of selective protein sensors.  相似文献   

3.
A glassy carbon electrode (GCE) was modified with electropolymerized films of isonicotinic acid in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode showed an excellent electrocatalytical effect on the oxidation of norepinephrine (NE). In PBS of pH 7.4, the oxidation current increased linearly with two concentration intervals of NE, one is 4.0×10−7 to 1.0×10−5 M, the other is 1.0×10−5 to 2.0×10−4 M. The detection limit (S/N=3) obtained by DPV was 6.0×10−9 M. Then the modified electrode was used to determine NE in an excess of ascorbic acid (AA) by difference pulse voltammetry. The peak potentials recorded in a PBS of pH 7.4 were −68 and +111 mV versus SCE for AA and NE, respectively. The high selectivity and sensitivity for NE was found to be due to the very distinct attracting interaction between NE cations and the negtively charged poly(isonicotinic acid) film in pH 7.4 PBS. The proposed method exhibited good recovery and reproducibility.  相似文献   

4.
Molecularly imprinted polymers (MIPs) from polymerizable Lewis acidic zinc(II)cyclen complexes and ethylene glycol dimethyl acrylate have been prepared. For the imprinting process the template molecule creatinine is reversibly coordinated to the zinc atom. The high strength of this interaction allows analyte binding to the MIP from aqueous solution with high affinity. Its pH dependence is used for controlled guest release with nearly quantitative analyte recovery rate. The binding capacity and selectivity profile of the MIP remains constant through several pH controlled binding and release cycles. MIPs missing a suitable metal binding site showed no significant affinity for thymine or creatinine. Flavin adsorbs nonspecifically to all polymers. The imprinting process reverses the binding selectivity of zinc(II)cyclen for creatinine and thymine from 1:34 in homogeneous solution to 3.5:1 in the MIP. Scatchard plot analysis of creatinine binding isotherms reveals uniform binding of the imprint, with fits indicating a one-site model; however, similar analysis for thymine indicate high and low affinity sites. This corresponds to unrestricted coordination sites freely accessible for thymine, e.g., at the polymer surface, and misshaped imprinted sites, which still can accommodate thymine. More than 50% of all binding sites exclusively bind creatinine and are not accessible to thymine. The binding properties of a copolymer of polymerizable zinc(II)cyclen and ethylene glycol dimethyl acrylate missing the creatinine template, which match the binding selectivity of the complex in solution, confirm that the origin of altered selectivities is the imprinting process. With binding ability at physiological pH, the MIPs are applicable for tasks in medicinal diagnostics or biotechnology. Imprinted zinc(II)cyclen complexes provide, like a metalloenzyme binding motif, high binding affinity by reversible coordination while the surrounding macromolecule determines binding selectivity.  相似文献   

5.
In the present study, two novel molecularly imprinted polymers (MIPs) with remarkable recognition properties for metformin and its transformation product, guanylurea, have been prepared for their selective, enrichment, isolation and removal from aqueous media. The prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and swelling experiments. The performance of the prepared MIPs was evaluated by various parameters including the influence of pH, contact time, temperature and initial compound concentration. The effects on the adsorption behavior of the removal process parameters were studied and the equilibrium data were fitted by the Langmuir and Freundlich models. Due to the imprinting effect, adsorption performance of MIPs was always superior to its corresponding NIP (non-imprinted polymer), with maximum adsorption capacity ∼80 mg g−1 for both MIPs. Stability and reusability of the MIPs up to the 5th cycle meant that they could be applied repeatedly without losing substantial removal ability. In the next step, the prepared MIP nanoparticles were evaluated as sorbents in a dispersive solid phase extraction (D-SPE) configuration for selective enrichment and determination of metformin and guanylurea in different aqueous matrices. Under the working extraction conditions, the D-SPE method showed good linearity in the range of 50–1000 ng L−1, repeatability of the extractions (RSD 2.1–5.1%, n = 3), and low limits of detection (1.5–3.4 ng L−1). The expanded uncertainty of the data obtained was estimated following a bottom-up approach. The proposed method combined the advantages of MIPs and D-SPE, and it could become an alternative tool for analyzing the residues of METF and its transformation product GUA in complex water matrices, such as wastewaters.  相似文献   

6.
In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer.For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L−1 through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.  相似文献   

7.
Molecularly imprinted polymers (MIPs) are tailor-made polymers with high selectivity for the template molecule. This selectivity arises from the synthetic procedure followed to prepare the MIP. In this work, the influence of process parameters on the preparation of vinblastine (VLB) imprinted polymers was presented. In the procedure of polymerization, VLB (0.1 mmol) was used as the template molecule and a commonly used initiator, azobisisobutyronitrile (AIBN), was employed to initiate the reaction at 60 °C. The influence of the following parameters was investigated: the moles of functional monomer (MAA, 0.3-1.0 mmol), the moles of cross-linker (EDMA, 1.5-5.0 mmol) and the porogenic solvent (toluene or acetonitrile). A mathematical method of uniform design was applied to optimize these selected parameters in order to increase the selectivity of MIP for template molecule. The experimental data were analyzed to obtain the regression model and the optimal conditions were achieved by optimization with uniform design software. The MIP was synthesized under the optimal conditions that 1.0 mmol of MAA and 5.0 mmol of EDMA copolymerized in toluene in the presence of 0.1 mmol of VLB. After removal of the template molecule, the obtained MIP was then employed as the sorbents of solid-phase extraction (SPE) to separate VLB from Catharanthus roseus extract. The results showed that the polymer exhibited high affinity to the template molecule and could separate and enrich VLB from C. roseus extract effectively. The recovery of VLB on the optimal MIP was 89.00%, which agreed closely with the predicted recovery. Therefore it is possible to further improve the nature of the polymer by optimizing the polymerization parameters with the method of uniform design.  相似文献   

8.
Conventional molecular imprinting technology allows the synthesis in organic solvents of molecularly imprinted polymers (MIPs) selective toward relatively low molecular weight compounds. However, synthesis in aqueous media of chemically and mechanically stable MIPs that can recognize biomolecules such as peptides and proteins still is a great challenge. In this article, we report the successful synthesis of peptide-selective MIPs in aqueous solution. HPLC evaluation of these polymers with a water-based mobile phase showed their selectivity for the peptide, [Sar1,Ala8]angiotensin II (SA), that had been used as the template, but not for its parent peptide angiotensin II (AII). The binding capacity and selectivity of our MIPs depended on the ratio of template to functional monomer in the polymerization mixture, as well as on the ionic strength and pH of the chromatographic mobile phase. These MIPs can be used for chromatographic detection of the octapeptide [Sar1,Ala8]angiotensin II in aqueous solution, with a detection limit of 8 pmol and a response that is linear (r2>0.99) over the concentration range 0.4-20 μM.  相似文献   

9.
Molecularly imprinted polymers (MIPs) are being increasingly used as selective adsorbents in different analytical applications. To satisfy the different application purposes, MIPs with well controlled physical forms in different size ranges are highly desirable. For examples, MIP nanoparticles are very suitable to be used to develop binding assays and for microfluidic separations, whereas MIP beads with diameter of 1.5-3 μm can be more appropriate to use in new analytical liquid chromatography systems. Previous studies have demonstrated that imprinted microspheres and nanoparticles can be synthesized using a simple precipitation polymerization method. Despite that the synthetic method is straightforward, the final particle size obtained has been difficult to adjust for a given template. In this work, we initiated to study new synthetic conditions to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template. Varying the composition of the cross-linking monomer allowed the particle size of the MIP beads to be altered in the range of 130 nm to 2.4 μm, whereas the favorable binding property of the imprinted beads remained intact. The chiral recognition sites were further characterized with equilibrium binding analysis using tritium-labeled (S)-propranolol as a tracer. In general, the imprinted sites displayed a high chiral selectivity: the apparent affinity of the (S)-imprinted sites for (S)-propranolol was 20 times that of for (R)-propranolol. Compared to previously reported irregular particles, the chiral selectivity of competitive radioligand binding assays developed from the present imprinted beads has been increased by six to seven folds in an optimized aqueous solvent.  相似文献   

10.
This work shows developing conductometric sensor based on molecularly imprinted polymer (MIP) for the screening of complex mixture of haloacetic acids (HAAs) in drinking water. The recognition of the HAAs was achieved by trichloroacetic acid (TCAA)-imprinted polymers synthesised from the copolymerization of 4-vinylpyridine (4-VPD) and ethylene glycol dimethacrylate (EDMA) in the presence of the TCAA template in acetonitrile, either by bulk polymerization (BP) method or by a multi-step swelling polymerization (MSP) method. TCAA-imprinted polymer of both methods was tested for re-binding with the template and its analogs. It was found that these polymers could bind selectively to the template molecule and HAA derivatives. HAA measurements were carried out by the application of the polyvinyl chloride membrane fabricated with TCAA-imprinted polymer on conductometric sensors. The technological parameters (operating frequency, membrane composition, ionic strength and medium pH) for the sensors were identified and optimised in respect to the response to TCAA, using sensor fabricating with BP-based MIP as a model. The selectivity of the sensors constructed with MIPs made by either that of the two imprinting methods was also investigated, which the influence of the method of imprinting on the binding strength and selectivity of the recognition element embedded in sensor was observed. The sensors showed high sensitivity and selectivity for the response toward TCAA, the sensor modified with MSP-based MIP being better. In addition, the sensors, particularly when was constructed with MSP-based MIP exhibited good cross-reactivities with a wide range of HAAs, which is useful for the screening of the group of HAA usually present in chlorinated water in complex mixtures. Thus, the sensor modified with MSP-based MIP was chosen for analytical application. The calibration of this sensor was determined, showing the good linear graphs (R2>0.970) for HAAs over the concentration range of 25-1000 μg/l and the detection limit of each HAA in the range 0.2-5.0 μg/l. Moreover, the results in real analysis of the sensor indicate the simplicity and reliability of the method. The present work demonstrated that the sensor based on TCAA-imprinted polymer is a fast and sensitive screening method of HAAs in drinking water.  相似文献   

11.
This study attempted to determine absolute heparin concentration in phosphate buffer solution (PBS, pH 7.4) by using quartz crystal microbalance (QCM) as an affinity biosensor. Electrochemical impedance spectroscopy (EIS) was also used to investigate immobilization of protamine and heparin assay. In addition, the effectiveness of physical adsorption in immobilizing protamine was confirmed by examining the preparation conditions, including the incubation time and protamine concentration. It induced maximum decrease (ca. −100 Hz) in oscillating frequency of QCM by applying 20 mg/ml protamine and 20 min for incubation in PBS. Heparin adsorption onto protamine-modified electrode in PBS revealed an exponential-like binding curve and long duration for reaching the steady state in frequency response of QCM. Moreover, two linear calibration curves were obtained judging from the initial slope (df/dt) and the frequency change (Δf) of QCM obtained after a binding interval (600 s) for heparin concentrations from 0 to 3.0 and 7.0 U/ml, respectively. In EIS analysis, calibration curves with linear concentration range of 0-3.0 U/ml were obtained for heparin in PBS when ferrocyanide was used as an electroactive marker.  相似文献   

12.
The molecular recognition properties of molecular imprinted polymers which bind the carbamate function were studied. Functional monomers potentially able to form non-covalent interactions with the model molecule N,O-dibenzylcarbamate were selected on the basis of a computational approach describing possible interactions between the template and a small library of vinylic monomers. These results were in accordance with N,O-dibenzylcarbamate batch-rebinding measurements performed on several miniMIPs prepared with the same library. From these preliminary results, four polymers were prepared by thermoinduced radical polymerization, using ethylene dimethacrylate as a cross-linker, chloroform (MIP1, MIP3) or acetonitrile (MIP2, MIP4) as porogens and methacrylic acid (MIP1, MIP2) or acrylamide (MIP3, MIP4) as functional monomers. Molecular recognition features of these materials were studied by high-performance liquid chromatography. In this manner selectivity was evaluated by considering the column retention of a library of sixteen structural analogues of dibenzylcarbamate, characterized by the transformation of the carbamate into a related function, or by the alteration of the molecular structure.The experimental results show that methacrylic acid is more efficient than acrylamide as a functional monomer (imprinting factors: MIP1 = 24.1, MIP2 = 25.6, MIP3 = 13.3, MIP4 = 2.44), and that chloroform enhances polymer selectivity. As regards structural motifs which conditionate the selectivity, the carbamate function strictly controls the presence/absence of molecular recognition, while shape and dimension of the substituents modulate the recognition itself. In particular, a marked recognition for analogs which were slightly bigger than the template was observed (N-benzyl-O-phenethylcarbamate: MIP1 α = 1.13, MIP2 α = 1.41, MIP3 α = 0.97; N-phenethyl-N-benzylcarbamate: MIP1 α = 1.61, MIP2 α = 1.17, MIP3 α = 0.81; N,O-diphenethylcarbamate: MIP1 α = 0.89, MIP2 α = 1.20, MIP3 α = 0.55).  相似文献   

13.
Tianhe Jiang  Baolin Chu  Wei Yan 《Talanta》2009,78(2):442-447
A molecularly imprinted polymer (MIP) has been synthesized by a thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, acetonitrile as porogenic solvent, and 17β-estradiol as template. The MIP showed obvious affinity for 17β-estradiol in acetonitrile solution, which was confirmed by absorption experiments. After optimization of molecularly imprinted solid-phase extraction (MISPE) conditions, three structurally related estrogenic compounds (17β-estradiol, estriol, and diethylstilbestrol) were used to evaluate the selectivity of the MIP cartridges. The MIP cartridges exhibited highly selectivity for E2, the recoveries were 84.8 ± 6.53% for MIPs and 19.1 ± 1.93% for non-imprinted polymer (NIP) cartridges. The detection and quantification limits correspond to 0.023 and 0.076 mg L−1. Furthermore, the MISPE methods were used to selectively extract E2 from fish and prawn tissue prior to HPLC analysis. This MISPE-HPLC procedure could eliminate all matrix interference simultaneously and had good recoveries (78.3-84.5%).  相似文献   

14.
We have developed a strategy to produce molecularly imprinted polymers based on polyacrylamide hydrogels for the selective imprinting of bovine haemoglobin (BHb). For the first time, we have explored in detail a variety of template removal strategies including varying ratios of sodium dodecylsulphate:acetic acid (SDS:AcOH) and also the use of a trypsin digest. The optimum ratio of SDS:AcOH was found to be a 10% (w/v):10% (v/v) for the most effective template removal. This resulted in >90% (imprinting efficiency) of re-loaded template (protein) molecule being selectively bound within the MIP. At 15%:15% of SDS:AcOH, although there was even more initial template removal, subsequent re-binding studies showed a decrease in imprinting efficiency (67.9%). Trypsin solutions were also used as a method of template removal. Up to 87.4% of template was reproducibly removed initially; however, the imprinting efficiency was only 20.4%. The high selectivity of the BHb HydroMIP to BHb compared with other structural analogues (namely cytochrome C and myoglobin) was successfully demonstrated.  相似文献   

15.
A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N’-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L−1 (r2 = 0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L−1 and 0.1 mg L−1, respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction.  相似文献   

16.
Molybdate was examined as a complex-forming additive to the CE background electrolytes (BGE) to affect the selectivity of separation of polyhydric phenols such as flavonoids (apigenin, hyperoside, luteolin, quercetin and rutin) and hydroxyphenylcarboxylic acids (ferulic, caffeic, p-coumaric and chlorogenic acid). Effects of the buffer concentrations and pH and the influence of molybdate concentration on the migration times of the analytes were investigated. In contrast to borate (which is a buffering and complex-forming agent generally used in CE at pH ≥9) molybdate forms more stable complexes with aromatic o-dihydroxy compounds and hence the complex-formation effect is observed at considerably lower pH. Model mixtures of cinnamic acid, ferulic acid, caffeic acid and 3-hydroxycinnamic acid were separated with 25 mM morpholinoethanesulfonic acid of pH 5.4 (adjusted with Tris) containing 0.15 mM sodium molybdate as the BGE (25 kV, silica capillary effective length 45 cm × 0.1 mm I.D., UV-vis detection at 280 nm). With 25 mM 2-hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulphonic acid/Tris of pH* 7.4 containing 2 mM sodium molybdate in aqueous 25% (v/v) methanol as the BGE mixtures of all the above mentioned flavonoids, p-coumaric acid and chlorogenic acid could be separated (the same capillary as above, UV-vis detection at 263 nm). The calibration curves (analyte peak area versus concentration) were rectilinear (r > 0.998) for ≈8-35 μg/ml of an analyte (with 1-nitroso-2-naphthol as internal standard). The limit of quantification values ranged between 1.1 mg l−1 for p-coumaric acid and 2.8 mg l−1 for quercetin. The CE method was employed for the assay of flavonoids in medicinal plant extracts. The R.S.D. values ranged between 0.9 and 4.7% (n = 3) when determining luteolin (0.08%) and apigenin (0.92%) in dry Matricaria recutita flowers and rutin (1.03%) and hyperoside (0.82%) in dry Hypericum perforatum haulm. The recoveries were >96%.  相似文献   

17.
In this work, a novel and convenient strategy was developed to prepare molecularly imprinted polymers (MIPs) on the surface of graphene sheet. In this route, vinyl group functionalized graphene (GR/NVC) was first prepared by immobilizing 4-vinylcarbazole onto the surface of graphene via π–π interaction. The subsequent grafting copolymerization of methacrylic acid and ethylene glycol dimethacrylate in the presence of 4-nitrophenol (4-NP, template molecule) was carried out at GR/NVC surface, leading to the formation of GR/MIPs composite. The GR/MIPs composite was characterized by FTIR, fluorescence, TGA, SEM and AFM, and was used to fabricate electrochemical sensor for the detection of 4-NP. The electrochemical behavior of GR/MIPs sensor for 4-NP was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The effects of the preparation conditions, such as concentration of the NVC and template, the solution pH, and incubation time, were also optimized. Under optimized conditions, the DPV current response of GR/MIPs sensor was nearly 12 times than that of the GR/NIPs sensor. It also should be noted that as compared to traditional MIP, shorter response time and much higher current response were demonstrated. In addition, the GR/MIPs sensor could recognize 4-NP from its structural analogs, indicating the excellent selectivity of the GR/MIPs sensor. The peak current is linearly proportional to the concentration of 4-NP ranging from 0.01 μM to 100 μM and 200 μM to 1000 μM with a significantly low detection limit of 5 nM, a wider response range and lower detection limits as compared to most of the previously reported electrochemical sensors for 4-NP. Furthermore, the GR/MIPs sensor exhibits good stability with adequate reproducibility and has been successfully used to determine 4-NP in water samples.  相似文献   

18.
Sample preparation techniques have always been considered as a complex issue in the analytical process. Most of the sample preparation techniques show a lack of selectivity. Molecularly imprinted polymer (MIP) is a synthetic approach for sample preparation technique that has the ability of selective extractions. Generally, MIPs are selective sorbent, MIPs are capable of binding a molecule or its geometrical analogues. The imprinted polymers own particular voids exclusively framed for the aimed target analytes. These MIPs have been synthesized through a complex route of polymerization using a dedicated crosslinker, a template and function bound specific monomers (mainly interacting with the template). Despite having various pros like selectivity, morphological predictability, chemical & thermal stability, points alike binding site heterogeneity, partial template removal, and limited application pose a challenge. In this regard, a relatively newer carbon-based MIP method is explored as the molecular imprinting technique in various environmental samples. This paper describes the current scenario in the field of molecular-based imprinting technology using different carbon engrained materials and highlights the latest applications in this field and suggest proposals for the prospect in the area of the MIP.  相似文献   

19.
Molecular imprinting is a novel technique used for chiral separation, artificial antibodies, sensors, and assays. Typically, molecular imprinted polymers (MIPs) are monoliths with irregular shapes. However, microspherical shapes with more uniform size can be obtained by the method of precipitation polymerization, which offers a higher active surface area by manipulating its compositions. In this study, MIP particles for the target molecule, morphine, were synthesized using a precipitation polymerization method that is more facile than the previous one that produced a thermally polymerized bulk. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was utilized to immobilize the MIP particles onto the indium tin oxide (ITO) glass as a MIP/PEDOT-modified electrode. The sensitivity for the MIP/PEDOT-modified electrode with MIP particles was 41.63 μA/cm2 mM, which is more sensitive than that with non-MIP particles or that of a single PEDOT film with no incorporated particles in detecting morphine ranging from 0.1 to 2 mM. The detection limit was 0.3 mM (S/N = 3). In addition, we presented that the modified electrode can discriminate codeine that plays an interfering species.  相似文献   

20.
Silica particles have been used as supports for the preparation of three different propazine-imprinted polymer formats. First format refers to grafting of thin films of molecularly imprinted polymers (MIPs) using an immobilised iniferter-type initiator (inif-MIP). The other two new formats were obtained by complete filling of the silica pores with the appropriate polymerisation mixture leading to a silica-MIP composite material (c-MIP) followed by the dissolution of the silica matrix resulting in spherical MIP beads (dis-MIP). These techniques offer a mean of fine-tuning the particle morphology of the resulting MIP particles leading to enhanced capacity in chromatographic applications. Porous silica (specific surface area S = 380 m2 g−1, particle size ps = 10 μm, pore volume Vp = 1.083 ml g−1 and pore diameter dp = 10.5 nm), methacrylic acid and ethylenglycol dimethacrylate were used for the preparation of the materials. All the MIP formats imprinted with propazine have been characterised by elemental analysis, FT-IR spectroscopy, nitrogen adsorption and scanning electron microscopy. Further, the materials were assessed as stationary phases in HPLC. Capacity factors, imprinting factors and theoretical plate numbers were calculated for propazine and other related triazines in order to compare the chromatographic properties of the three different stationary phases. For the inif-MIPs the column efficiency depended strongly on the amount of grafted polymer. Thus, only the polymers grafted as thin films of ca. 1.3 nm average thickness show imprinting effects and the highest column efficiency giving plate numbers (N) of 1600 m−1 for the imprinted propazine. The performance of the c-MIP stationary phase decreases as result of the complete pore filling after polymerisation and increases again after the removal of the silica matrix due to a better mass transfer in the porous mirror-image resulting polymer. From this study can be concluded that the inif-MIP shows the best efficiency for use as stationary phase in HPLC for the separation of triazinic herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号