首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

2.
The utilization of Amberlite (IRP-69 ion-exchange resin, 100–500 wet mesh) as the binding phase in the diffusive gradients in thin films (DGT) technique has shown potential to improve the assessment of plant-available K in soils. The binding phase has recently been optimized by using a mixed Amberlite and ferrihydrite (MAF) gel which results in linear K uptake over extended deployment periods and in solutions with higher K concentrations. As restriction of K uptake by Ca on the Amberlite based resin gel has been previously proposed, potential competing effects of Ca2+, Mg2+ and NH4+ on K uptake by the MAF gel were investigated. These cations had no effect on K elution efficiency which was 85%. However, K uptake by the MAF gel was restricted in the presence of competing cations in solution. Consequently, the diffusion coefficient of K decreased in the presence of cations compared to previous studies but was stable at 1.12 × 10−5 cm2 s−1 at 25 °C regardless of cation concentrations. Uptake of K by the DGT device was affected by the presence of excessive Ca in more than 30% of twenty typical Australian agricultural soils. However, this problem could be circumvented by using a shorter deployment time than the normal 24 h. Moderate correlation of concentrations of K extracted by DGT with Colwell K (extracted by NaHCO3, R2 = 0.69) and NH4OAc K (R2 = 0.61) indicates that DGT measures a different pool of K in soils than that measured by the standard extractants used. In addition, the MAF gel has the ability to measure Ca and Mg simultaneously.  相似文献   

3.
4.
A simple non-chromatographic method for the determination of mercury (Hg2+), methylmercury (MeHg+), dimethylmercury (Me2Hg), and phenylmercury (PhHg+) employing atomic fluorescence spectrometry (AFS) as detection technique was developed. Mercury species showed a particular behavior in the presence of several reagents. In a first stage SnCl2 was employed for Hg2+ determination; in a second step, [Hg2+ + PhHg+] concentration was determined using SnCl2 and UV radiation. MeHg+ decomposition was prevented adding 2-mercaptoethanol. In a third stage, [Hg2+ + PhHg+ + MeHg+] concentration was determined using K2S2O8. Finally, the four species were determined employing NaBH4. Reagents concentration and flow rates were optimized. The extraction technique of mercury species involved the use of 2-mercaptoethanol as ion-pair reagent. The limits of detection for Hg2+, PhHg+, MeHg+, and Me2Hg were 1, 40, 68, and 99 ng L−1 with a relative standard deviation of 1.5, 3.1, 4.7 and 5.8%, respectively. Calibration curve was linear with a correlation factor equal to 0.9995. The method was successfully applied to the determination of the mercury species in two Antarctic materials: IRMM 813 (Adamussium colbecki) and MURST-ISS-A2 (Antarctic Krill).  相似文献   

5.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

6.
A hyphenated method for mercury speciation analysis by the coupling of high performance liquid chromatography and inductively coupled plasma mass spectrometry with the online strong anion exchange column (SAX) preconcentration was developed. The Hg analytes (Hg+, MeHg, EtHg and Hg2+) were absorbed on the SAX column preconditioned with sodium 3-mercapto-1-propanesulfonate, and then rapidly eluted (less than 16 s) by 5 μL 3% (v/v) 2-mercaptoethanol. The enrichment factors of 1025 for Hg+, 1084 for MeHg, 1108 for EtHg and 1046 for Hg2+ were obtained using 6 mL sample in a 1.5-min enrichment procedure. Rapid separation of the four mercurial compounds was achieved within 5 min on a 50-mm C18 column using 0.5% (v/v) 2-mercaptoethanol as the mobile phase. The detection limits for Hg+, MeHg, EtHg and Hg2+ were 0.015, 0.010, 0.009 and 0.016 ng L−1, each, and the relative standard deviations of peak height and peak area (5 ng L−1 for each Hg species) were all below 5%. Mercury speciation in three freshwater, two drinking water and two seawater samples were then analyzed by the proposed method. MeHg and Hg2+ concentrations down to 0.14 and 0.56 ng L−1 were detected in the drinking waters.  相似文献   

7.
A highly selective mercury electrode based on a diamine donor ligand   总被引:1,自引:0,他引:1  
Gupta VK  Chandra S  Lang H 《Talanta》2005,66(3):575-580
(H2NCHMeCH2NH2)(H2O)2HgCl2 (I) was synthesised, characterised and used for the fabrication of a potentiometric sensor for Hg2+ metal ions. Membrane having I as electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, dibutylamine (DBA) as plasticizer in PVC matrix in the percentage ratio of 10:3:150:150 (I:NaTPB:DBA:PVC) (w/w) exhibits a linear response to Hg2+ ions in a concentration range of 1.25 × 10−5 to 1.0 × 10−1 M having a detection limit of 8.9 × 10−6 with a slope of 25 ± 0.1 mV over the pH range 6.6-9.3. Selectivity coefficients for Hg(II) relative to a number of interfering ions were investigated. The electrode is highly selective for Hg2+ ions over a large number of mono-, bi-, and trivalent cations. Normal interferents like Ag+ and Cd2+ do not interfere in the working of the electrode. The electrode has also been used successfully in mixtures having a 10% (v/v) methanol and acetone content without showing any considerable change in working concentration range or slope. These electrodes have been found to be chemically inert showing a fast response time of 10 s and were used over a period of 4 months with good reproducibility (s = ±0.2). The electrode was used for determination of mercury in binary mixtures with 100% recovery and thus the proposed sensor can be used for real sample analysis.  相似文献   

8.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

9.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

10.
The collisional broadening and shift rate coefficients of the “forbidden“ 6p2 3P0 → 6p2 3P1 transition in lead were determined by diode laser absorption measurements performed simultaneously in two resistively heated hot-pipes. One hot-pipe contained Pb vapor and noble gas (Ar or He) at low pressure, while the other was filled with Pb and noble gas at variable pressure. The measurements were performed at temperatures of 1220 K and 1290 K, i.e., lead number densities of 4.8 × 1015 cm− 3 and 1.2 × 1016 cm− 3. The broadening rates were obtained by fitting the experimental collisionally broadened absorption line shapes to theoretical Voigt profiles. The shift rates were determined by measuring the difference between the peak absorption positions in the spectra measured simultaneously in the heat pipe filled with noble gas at reference pressure and the one with noble gas at variable pressure. The following data for the broadening and shift rate coefficients due to collisions with Ar and He were obtained: γBAr = (3.4 ± 0.1) × 10− 10 cm3 s− 1, γBHe = (3.8 ± 0.1) × 10− 10 cm3 s− 1, γSAr = (− 7.3 ± 0.8) × 10− 11 cm3 s− 1, γSHe = (− 6.5 ± 0.7) × 10− 11 cm3 s− 1.  相似文献   

11.
Applicability of polyaniline (PANI) has been investigated for the preconcentration and speciation of inorganic mercury (Hg2+) and methyl mercury (CH3Hg+) in various waters (ground, lake and sea waters). Preliminary experiments (batch) with powdered PANI for the quantitative removal of both Hg2+ and CH3Hg+ showed that the retention of Hg2+ was almost independent of pH while a pH dependent trend from pH 1 to 12 was seen for CH3Hg+ with maximum retention at pH > 5. Time dependence batch studies showed that a contact time of 10 min was sufficient to reach equilibrium. The Kd values were found to be ∼8 × 104 and ∼7 × 103 for Hg2+ and CH3Hg+, respectively.Subsequently column experiments were carried out with PANI and the separation of the species was carried out by selective and sequential elution with 0.3% HCl for CH3Hg+ and 0.3% HCl-0.02% thiourea for Hg2+. This was then followed by further pre-concentration of mercury on a gold trap and its determination by CVAAS. The uptake efficiency studies showed that the PANI column was able to accumulate up to 100 mg Hg2+/g and 2.5 mg CH3Hg+/g. This method allows both preconcentration and speciation of mercury with preconcentration factors around 120 and 60 for Hg2+ and CH3Hg+, respectively. The interfering effects of various foreign substances on the retention of mercury were investigated.  相似文献   

12.
We report the synthesis of a novel bistriazene, 4,4′-bis(3-(4-phenylthiazol-2-yl)triazenyl)biphenyl (BPTTBP), and its highly sensitive color reaction with Hg2+. The new reagent was synthesized in good yield by coupling 2-amino-4-phenylthiazole with 4,4′-biphenyldiamine bisdiazonium salt. Using a blend of surfactants N-cetylpyridinium chloride (CPC) and polyethylene glycol n-octanoic phenyl ether (OP) as a micelle sensitizer, the red colored reagent assembles with Hg2+ in pH 9.8 borate buffer according to a 1:1 stoichiometry, forming a blue oligomeric/polymeric chelating complex with a high apparent stability constant (1.1 × 108 M−1). Whereas the maximum absorption of reagent occurs at 510 nm with an extinct coefficient of 1.35 × 104 M−1 cm−1, the complex absorbs at 611 nm, with an apparent extinct coefficient of 1.04 × 105 M−1 cm−1. Beer's law is obeyed in the range of 0-15 μg/25 mL Hg2+, and Sandell's sensitivity is 1.92 × 10−3 μg/cm2. In the presence of thiourea and Na4P2O7 as masking agents, the method was found free from interferences of foreign ions commonly occurring with mercury. The optimized protocol has been successfully applied to spectrophotometric determination of mercury in waste water samples. The features of the new reagent associated with its special structure were discussed, and an unprecedented “domino effect” was proposed to account for its unique chelating stoichiometry with Hg2+.  相似文献   

13.
Mercury speciation analysis (inorganic mercury, Hg2+, methylmercury, CH3Hg+ and dimethylmercury, (CH3)2Hg) by gas chromatography (GC) coupled to atomic emission spectroscopy with microwave induced plasma as excitation source (MIP-AES), after ethylation of the sample and extraction of the derivatised species into an organic phase, has been optimised using factorial design, analysis of variance and MultiSimplex techniques. Standard conditions were used in the derivatisation step with sodium tetraethylborate (NaB(C2H5)4) and in the extraction step into hexane. Good separation of the species investigated and maximum sensitivity was achieved using an OV-1701 capillary column. The sensitivity was found to be maximum with an helium flow rate (make-up flow) of 100 ml min−1. Procedures for a correct cleaning of glass and plastic ware, as well as for the purification of reagents used throughout the analytical process, are also suggested in order to avoid unacceptably high blank signals. The effect that ageing of stock solutions used in calibrations has on the artefact formation of CH3Hg+ has been also investigated. Using the optimum conditions found, good quality calibration curves (R2>0.995) for the three mercury species were obtained. Absolute detection limits of 0.5, 3 and 15 pg of (CH3)2Hg, CH3Hg+ and Hg2+, respectively, were estimated. The repeatability of the analysis was found to be better than 5% (n=5) in relative standard deviation (R.S.D.) units. The optimised procedure for the speciation of mercury in standard samples is the first step in the development of a method for routine analysis of mercury species in aquatic environmental samples.  相似文献   

14.
Room temperature ionic liquids can be considered as environmentally benign solvents with unique physicochemical properties. Ionic liquids can be used as extractant phases in SDME, being compatible with chromatographic systems. A single-drop microextraction method was developed for separation and preconcentration of mercury species (MeHg+, EtHg+, PhHg+ and Hg2+), which relies on the formation of the corresponding dithizonates and microextraction of these neutral chelates onto a microdrop of an ionic liquid. Afterwards, the separation and determination were carried out by high-performance liquid chromatography with a photodiode array detector. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were: microextraction time, 20 min; stirring rate, 900 rpm; pH, 11; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]); drop volume, 4 μL; and no sodium chloride addition. Limits of detection were between 1.0 and 22.8 μg L−1 for the four species of mercury, while the repeatability of the method, expressed as relative standard deviation, was between 3.7 and 11.6% (n = 8). The method was finally applied to the determination of mercury species in different water samples.  相似文献   

15.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

16.
Zhao YD  Bi YH  Zhang WD  Luo QM 《Talanta》2005,65(2):489-494
Direct electrochemistry of hemoglobin (Hb) is observed at carbon nanotube (CNT) interface. The adsorbing Hb can transfer electron directly at CNT interface compared with common carbon material. The heterogeneous electron transfer rate constant k of Hb can be calculated as 0.062 s−1, the transfer coefficient α is 0.21 and the average surface coverage of Hb on CNT surface is 3.58 × 10−9 ± 2.7 × 10−10 mol/cm2. It is found that the adsorbing Hb still keeps its catalytic activity to H2O2. This sensor was used to detect H2O2. The apparent Michaelis-Menten constant is calculated as 6.75 × 10−4 mol L−1.  相似文献   

17.
A novel chelating resin containing S, N and O atoms (PSME-EDA) was synthesized by using poly(2-hydroxyethylmercaptomethylstyrene) (PSME) and diethanolamine (EDA) as materials. Its structure was characterized by elemental analysis, Fourier transform-infrared spectra (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The adsorption of the resin for Hg2+ was investigated. The saturated adsorption capacity of PSME-EDA for Hg2+ could reach to about 1.1 mmol/g at 25 °C when the initial Hg2+ concentration was 0.02 mol/l. Some factors affecting the adsorption such as temperature, reaction time and ion concentration were also studied. The results showed that adsorption was controlled by liquid film diffusion. The increasing of temperature was beneficial to adsorption. The Langmuir model was better than the Freundlich model to describe the isothermal process. The values of ΔG, ΔH, and ΔS calculated at 25 °C were −7.99 kJ mol−1, 22.5 kJ mol−1 and 34.4 J mol−1 K−1, respectively. The adsorption mechanism of PSME-EDA resin for Hg(II) was confirmed by X-ray photoelectron spectroscopy (XPS).  相似文献   

18.
Hydroboration reactions of 1-octene and 1-hexyne with H2BBr·SMe2 in CH2Cl2 were studied as a function of concentration and temperature, using 11B NMR spectroscopy. The reactions exhibited saturation kinetics. The rate of dissociation of dimethyl sulfide from boron at 25 °C was found to be (7.36 ± 0.59 and 7.32 ± 0.90) × 10−3 s−1 for 1-octene and 1-hexyne, respectively. The second order rate constants, k2, for hydroboration worked out to be 7.00 ± 0.81 M s−1 and 7.03 ± 0.70 M s−1, while the overall composite second order rate constants, k K, were (3.30 ± 0.43 and 3.10 ± 0.37) × 10−2 M s−1, respectively at 25 °C. The entropy and enthalpy values were found to be large and positive for k1, whilst for k2 these were large and negative, with small values for enthalpies. This is indicative of a limiting dissociative (D) for the dissociation of Me2S and associative mechanism (A) for the hydroboration process. The overall activation parameters, ΔH and ΔS, were found to be 98 ± 2 kJ mol−1 and +56 ± 7 J K−1 mol−1 for 1-octene whilst, in the case of 1-hexyne these were found out to be 117 ± 7 kJ mol−1 and +119 ± 24 J K−1 mol−1, respectively. When comparing the kinetic data between H2BBr·SMe2 and HBBr2·SMe2, the results showed that the rate of dissociation of Me2S from H2BBr·SMe2 is on average 34 times faster than it is in the case of HBBr2·SMe2. Similarly, the rate of hydroboration with H2BBr·SMe2 was found to be on average 11 times faster than it is with HBBr2·SMe2. It is also clear that by replacing a hydrogen substituent with a bromine atom in the case of H2BBr·SMe2 the mechanism for the overall process changes from limiting dissociative (D) to interchange associative (Ia).  相似文献   

19.
The thermolysis of benzenediazonium tetrafluoroborate was studied by thermogravimetry in dynamic mode. The decomposition of [ArNN]+BF4 in the solid state with the formation of C6H5F, BF3, C6H6, and N2 starts at T > 348 K. The speed of the thermolysis was estimated gravimetrically and by infrared spectroscopy, considering the change of the intensity of the absorption band at 1498 cm−1, which corresponds to fluorobenzene. The maximal rate of thermolysis observes at the 366.5 K. A kinetic scheme, which includes the formation of a neutral complex [C6H5δ+?BF4δ], is proposed for the thermolysis of arenediazonium tetrafluoroborate. The decomposition of the complex with the formation of free-radical intermediates explains the chain character of the thermolysis.  相似文献   

20.
The rate constants for the reactions of OH radicals with CF3OCHFCF3, and CF3CHFCF3 have been measured over the temperature range 250-430 K. Kinetic measurements have been carried out using the flash photolysis, and laser photolysis methods combined, respectively, with the laser induced fluorescence technique. The influence of impurities in the samples has been investigated by using gas chromatography. No sizable effect of impurities was found on the measured rate constants of these fluorinated compounds, if the purified samples were used in the measurements. The following Arrhenius expressions were determined: k(CF3OCHFCF3) = (4.39 ± 1.38) × 10−13 exp[−(1780 ± 100)/T] cm3 molecule−1 s−1, and k(CF3CHFCF3) = (6.19 ± 2.07) × 10−13 exp[−(1830 ± 100)/T] cm3 molecule−1 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号