共查询到18条相似文献,搜索用时 15 毫秒
1.
Rosa Perestrelo Sílvia Petronilho José S. Câmara Sílvia M. Rocha 《Journal of chromatography. A》2010,1217(20):3441-3445
An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet). 相似文献
2.
基于基质修饰的多次顶空固相微萃取-气相色谱法检测酒精饮料中的氨基甲酸乙酯 总被引:4,自引:0,他引:4
氨基甲酸乙酯(EC)是发酵食品在发酵或贮存过程中产生的致癌副产物。建立了多次顶空固相微萃取-气相色谱法(MHS-SPME-GC)检测多种酒精饮料中EC的方法。采用自制的溶胶-凝胶聚乙二醇/羟基硅油复合SPME萃取头提高了方法的灵敏度,加入无水硫酸钠对基质进行修饰大大提高了EC的萃取效率。在优化条件下,方法的线性范围为0.04~100 mg/L,线性相关系数为0.9997,检出限为34 μg/L;方法重现性好,6次重复实验所得相对标准偏差为2.19%;准确度高,加标回收率在90.9%~103.6%之间。将建立的方法用于多种实际酒样中EC的检测,其结果与标准加入法得到的结果在统计学上无显著差异。本研究表明,MHS-SPME能够克服通常存在于SPME分析中的基质干扰效应,尤其适合于大量不同基质的样品分析。 相似文献
3.
《Journal of separation science》2018,41(3):639-647
A new method for quantification of 12 nitroaromatic compounds including 2,4,6‐trinitrotoluene, its metabolites and 2,4,6‐trinitrophenyl‐N‐methylnitramine with microextraction by packed sorbent followed by gas chromatography and mass spectrometric detection in environmental and biological samples is developed. The microextraction device employs 4 mg of C18 silica sorbent inserted into a microvolume syringe for sample preparation. Several parameters capable of influencing the microextraction procedure, namely, number of extraction cycles, washing solvent, volume of washing solvent, elution solvent, volume of eluting solvent and pH of matrix, were optimized. The developed method produced satisfactory results with excellent values of coefficient of determination (R2 > 0.9804) within the established calibration range. The extraction yields were satisfactory for all analytes (> 89.32%) for aqueous samples and (> 87.45%) for fluidic biological samples. The limits of detection values lie in the range 14–828 pg/mL. 相似文献
4.
Somaini L Saracino MA Marcheselli C Zanchini S Gerra G Raggi MA 《Analytica chimica acta》2011,(2):280-287
The sublingual combination of buprenorphine and naloxone (Suboxone®) and Methadone Maintenance Therapy have been found effective in treating heroin addiction. A new analytical method suitable for the simultaneous determination of buprenorphine, norbuprenorphine, methadone and naloxone in human plasma by means of liquid chromatography with coulometric detection has been developed. The chromatographic separation was achieved with a phosphate buffer–acetonitrile mixture as the mobile phase on a cyano column. The monitoring cell of the coulometric detector was set at an oxidation potential of +0.600 V. A rapid clean-up procedure of the biological samples using a microextraction by packed sorbent technique has been implemented, employing a C8 sorbent inserted into a syringe needle. The extraction yield values were satisfactory for all analytes (>85%). The calibration curves were linear over a range of 0.25–20.0 ng mL−1 for buprenorphine and norbuprenorphine, 3.0–1000.0 ng mL−1 for methadone and 0.13–10.0 ng mL−1 for naloxone. The sensitivity was also high with limits of detection of 0.08 ng mL−1 for both buprenorphine and norbuprenorphine, 0.9 ng mL−1 for methadone and 0.04 ng mL−1 for naloxone. The intraday and interday precision data were always satisfactory.The method was successfully applied to plasma samples obtained from former heroin addicts treated with opioid replacement therapy. 相似文献
5.
6.
Hajime Miyaguchi Yuko T. IwataTatsuyuki Kanamori Kenji TsujikawaKenji Kuwayama Hiroyuki Inoue 《Journal of chromatography. A》2009,1216(18):4063-4070
We developed a rapid identification and quantification method for the toxicological analysis of methamphetamine and amphetamine in human hair by gas chromatography/mass spectrometry coupled with a novel combination of micropulverized extraction, aqueous acetylation and microextraction by packed sorbent (MEPS) named MiAMi–GC/MS. A washed hair sample (1–5 mg) was micropulverized for 5 min in a 2 mL plastic tube with 250 μL of water. An anion-exchange sorbent was added to adsorb anionic interferences. After removing the residue with a membrane-filter unit, sodium carbonate and acetic anhydride was admixed in turn. Acetylation was completed in approximately 20 min at room temperature. The acetylated analytes in the reaction liquid were concentrated to an octadecylsilica sorbent packed in the needle of a syringe by a CombiPAL autosampler. Elution was carried out with 50 μL of methanol, and the entire eluate injected into a gas chromatograph using a programmable temperature vaporizing (PTV) technique. The time required for sample preparation and GC/MS analysis was approximately 1 h from a washed hair sample, and an evaporation process was not required. Ranges for quantification were 0.20–50 (ng/mg) each for methamphetamine and amphetamine using 1 mg of hair. Accuracy and relative standard deviation (RSD) were evaluated intraday and interday at three concentrations, and the results were within the limit of a guidance issued by U.S. Food and Drug Administration. For identification, full-scan mass spectra of methamphetamine and amphetamine were obtained using 5 mg of fortified hair samples at 0.2 ng/mg. The extraction device of MEPS was durable for at least 300 extractions, whereas the liner of the gas chromatograph should be replaced after 20–30 times use. The carry over was estimated to be about 1–2%. This sample-preparation method coupled with GC/MS is fast and labor-saving in comparison with conventional methods. 相似文献
7.
Polo M Garcia-Jares C Llompart M Cela R 《Analytical and bioanalytical chemistry》2007,388(8):1789-1798
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining
trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk
tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were
studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction
temperatures using two fiber coatings [Carboxen–polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane–divinylbenzene (PDMS/DVB)]
selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main
effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 °C
and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental
conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter
range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for
real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds
(musk xylene and musk ketone) were detected and quantified.
Figure Stardardized Pareto charts for the main effects and interactions 相似文献
8.
A simple and reliable method for the determination of polychlorinated biphenyls (PCBs) from mono- to octachlorobiphenyls in fish oil for dietary supplement is described. The method combines Florisil clean up and headspace solid-phase microextraction on 65 microm polydimethylsiloxane-divinylbenzene (PDMS-DVB). Analyte detection was carried out using GC-time-of-flight mass spectrometry (GC-TOF-MS). Fifty three PCB congeners including the seven indicator PCBs (IUPAC Nos. 28, 52, 101, 118, 138, 153 and 180) were analyzed. Under optimal conditions, the method detection limit (MDL) of each congener in the range from 0.8 to 31 ng/g was found. A certified reference material (BCR-349) was analyzed and it showed good agreement with the certified data. 相似文献
9.
Simultaneous determination of ethyl carbamate and 4‐(5‐)methylimidazole in yellow rice wine and soy sauce by gas chromatography with mass spectrometry 下载免费PDF全文
Pinggu Wu Liqun Zhang Liyuan Wang Jing Zhang Ying Tan Jun Tang Bingjie Ma Xiaodong Pan Wei Jiang 《Journal of separation science》2014,37(16):2172-2176
We developed a new method, based on alkaline diatomite solid‐phase extraction followed by gas chromatography with mass spectrometry, for the simultaneous determination of the toxic contaminants ethyl carbamate (EC) and 4‐(5‐)methylimidazole (4‐MEI) in yellow rice wine and soy sauce. The optimal extraction conditions were defined. With the application of alkaline diatomite solid‐phase extraction, damage to the capillary column by organic acids was greatly reduced. With deuterated EC used as the internal standard, the linearity of the calibration curves for EC and 4‐MEI was good with correlation coefficient above 0.99. In a spiked experiment with EC and 4‐MEI in yellow rice wine and soy sauce, recovery of the added EC was 80.5–102.5% and that of 4‐MEI was 78.3–92.8%. The limit of quantification and limit of detection for EC were 6.0 and 2.0 μg/kg, respectively, and for 4‐MEI were 15.0 and 5.0 μg/kg, respectively. The validation results demonstrate that the method is fast, simple, and selective, and therefore is suitable for simultaneously determining the presence of EC and 4‐MEI in fermented food. 相似文献
10.
Simple and rapid determination of phthalates using microextraction by packed sorbent and gas chromatography with mass spectrometry quantification in cold drink and cosmetic samples 下载免费PDF全文
Ramandeep Kaur Heena Ripneel Kaur Susheela Rani Ashok Kumar Malik 《Journal of separation science》2016,39(5):923-931
A simple and rapid method using microextraction by packed sorbent coupled with gas chromatography and mass spectrometry has been developed for the analysis of five phthalates, namely, diethyl phthalate, benzyl‐n‐butyl phthalate, dicyclohexyl phthalate, di‐n‐butyl phthalate, and di‐n‐propyl phthalate, in cold drink and cosmetic samples. The various parameters that influence the microextraction by packed sorbent performance such as extraction cycle (extract–discard), type and amount of solvent, washing solvent, and pH have been studied. The optimal conditions of microextraction using C18 as the packed sorbent were 15 extraction cycles with water as washing solvent and 3 × 10 μL of ethyl acetate as the eluting solvent. Chromatographic separation was also optimized for injection temperature, flow rate, ion source, interface temperature, column temperature gradient and mass spectrometry was evaluated using the scan and selected ion monitoring data acquisition mode. Satisfactory results were obtained in terms of linearity with R2 >0.9992 within the established concentration range. The limit of detection was 0.003–0.015 ng/mL, and the limit of quantification was 0.009–0.049 ng/mL. The recoveries were in the range of 92.35–98.90% for cold drink, 88.23–169.20% for perfume, and 88.90–184.40% for cream. Analysis by microextraction by packed sorbent promises to be a rapid method for the determination of these phthalates in cold drink and cosmetic samples, reducing the amount of sample, solvent, time and cost. 相似文献
11.
A simple and economic method for the analysis of phthalate esters, dimethyl phthalate, diethyl phthalate, di-iso-butyl phthalate, di-n-butyl phthalate, and di-2-ethylhexyl phthalate in cow milk samples by means of gas chromatography-flame ionization detection and gas chromatography-mass spectrometry has been developed. In this work, NaCl and ACN were added to 5 mL of the milk sample as the salting out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of NaCl, a two-phase system was formed: upper phase - acetonitrile containing phthalate esters -and lower phase - aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of phthalate esters from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with 1,2-dibromoethane at microliter level and injected by syringe into NaCl solution. After the extraction of the selected phthalate esters into 1,2-dibromoethane, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Under the optimum extraction conditions, low limits of detection and quantification between 1.5-3 and 2.5-11 ng/mL, respectively was observed. Enrichment factors were in the range of 397-499. The relative standard deviations for the extraction of 100 ng/mL of each phthalate ester were in the range of 3-4% (n = 6). Finally, some milk samples were successfully analyzed using the proposed method and two analytes, di-n-butyl phthalate and di-2-ethylhyxel phthalate, were determined in them in nanogram per milliliter level. 相似文献
12.
A pre-column derivatization method for the sensitive determination of aldehydes using the tagging reagent 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl carbonylhydrazine (DBCEEC) followed by high-performance liquid chromatography with fluorescence detection and APCI-MS identification has been developed. The chromophore of fluoren-9-methoxy-carbonylhydrazine (Fmoc-hydrazine) reagent was replaced by 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl functional group, which resulted in a sensitive fluorescence tagging reagent DBCEEC. DBCEEC could easily and quickly labeled aldehydes. The maximum excitation (300 nm) and emission (400 nm) wavelengths did not essentially change for all the aldehyde derivatives. Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z [M + (CH2)n]+ in positive-ion mode (M: molecular weight of DBCEEC, n: corresponding aldehyde carbon atom numbers). The collision-induced dissociation of protonated molecular ion formed fragment ions at m/z 294.6, m/z 338.6 and m/z 356.5. Studies on derivatization demonstrated excellent derivative yields in the presence of trichloroacetic acid (TCA) catalyst. Maximal yields close to 100% were observed with a 10 to 15-fold molar reagent excess. Separation of the derivatized aldehydes had been optimized on ZORBAX Eclipse XDB-C8 column with aqueous acetonitrile as mobile phase in conjunction with a binary gradient elution. Excellent linear responses were observed at the concentration range of 0.01-10 nmol mL−1 with coefficients of >0.9991. Detection limits obtained by the analysis of a derivatized standard containing 0.01 nmol mL−1 of each aldehyde, were from 0.2 to 1.78 nmol L−1 (at a signal-to-noise ratio of 3). 相似文献
13.
Yasuyuki Zushi Shunji HashimotoAkihiro Fushimi Yoshikatsu TakazawaKiyoshi Tanabe Yasuyuki Shibata 《Analytica chimica acta》2013
Comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC × GC–MS) is a powerful tool for comprehensive analysis of organic pollutants. In this study, we developed a powerful analytical method using GC × GC for rapid and accurate identification and quantification of compounds in environmental samples with complex matrices. Specifically, we have developed an automatic peak sentinel tool, T-SEN, with free programming software, R. The tool, which consists of a simple algorithm for on peak finding and peak shape identification, allows rapid screening of target compounds, even for large data sets from GC × GC coupled to high resolution time of flight mass spectrometry (HRTOFMS). The software tool automatically assigns and quantifies compounds that are listed in user databases. T-SEN works on a typical 64 bit workstation, and the reference calculation speed is 10–20 min for approximately 170 compounds for peak finding (five ion count setting) and integration from 1–2 GB of sample data acquired by GC × GC–HRTOFMS. We analyzed and quantified 17 PCDD/F congeners and 24 PCB congeners in a crude lake sediment extract by both GC × GC coupled to quadrupole mass spectrometry (qMS) and GC × GC–HRTOFMS with T-SEN. While GC × GC–qMS with T-SEN resulted in false identification and inaccurate quantification, GC × GC–HRTOFMS with T-SEN provided correct identification and accurate quantification of compounds without sample pre-treatment. The differences between the values measured by GC × GC–HRTOFMS with T-SEN and the certified values for the certified reference material ranged from 7.3 to 36.9% for compounds with concentrations above the limit of quantification. False positives/negatives were not observed, except for when co-elution occurred. The technique of GC × GC–HRTOFMS in combination with T-SEN provides rapid and accurate screening and represents a powerful new approach for comprehensive analysis. 相似文献
14.
Watcharaporn Hoisang Duangjai Nacapricha Prapin Wilairat Warawut Tiyapongpattana 《Journal of separation science》2019,42(11):2032-2043
Liquid microextraction employing solidification of the floating organic droplet, with vortexing and heating to optimize extraction efficiency, was developed for the determination of seven insecticides in fruit juice, vegetables, and agricultural runoff water. The extracts were analyzed by gas chromatography with both flame ionization and mass spectrometry detection for the determination of chlorpyrifos, prothiofos, profenofos, ethion, λ‐cyhalothrin, permethrin, and cypermethrin, respectively. Using 20 μL of 1‐undecanol in 10 mL of aqueous solution containing 1% w/v sodium chloride provided preconcentration factor of 500. The enrichment factor of the analytes was in the range of 355 to 509 with extraction recovery >71%. The linearity ranges were 4–200 μg/kg for gas chromatography with flame ionization detection and 1–100 μg/kg for gas chromatography with mass spectrometry, with limits of detection ranging from 0.04 to 1.2 μg/kg, which are lower than the international maximum residue limits for vegetables and fruit juice. Intra‐day and inter‐day precisions are less than 5.4 and 7.0% relative standard deviation, respectively. The method was successfully applied to the determination of the seven insecticides in samples of vegetables, fruit juice and agricultural runoff, with recoveries ranging from 61.7 to 120.8%. The extraction method is simple, efficient and environmentally friendly. 相似文献
15.
Following the green analytical chemistry principles, an efficient strategy involving second-order data provided by liquid chromatography (LC) with diode array detection (DAD) was applied for the simultaneous determination of estriol, 17β-estradiol, 17α-ethinylestradiol and estrone in natural water samples. After a simple pre-concentration step, LC–DAD matrix data were rapidly obtained (in less than 5 min) with a chromatographic system operating isocratically. Applying a second-order calibration algorithm based on multivariate curve resolution with alternating least-squares (MCR-ALS), successful resolution was achieved in the presence of sample constituents that strongly coelute with the analytes. The flexibility of this multivariate model allowed the quantification of the four estrogens in tap, mineral, underground and river water samples. Limits of detection in the range between 3 and 13 ng L−1, and relative prediction errors from 2 to 11% were achieved. 相似文献
16.
Hui-Ling Lee 《Talanta》2007,73(1):76-80
A sensitive and robust high-performance liquid chromatography-electrospray ionization tandem mass spectrometry method to analyze 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its five metabolites in one passage was developed and validated. The method achieved excellent reproducibility and accuracy. Linearity was observed for all six compounds (R2 = 0.999) with detection limits (S/N ≥ 3) ranging from 0.2 to 2.4 pg on column and 0.01-0.12 ng ml−1 in samples injected. Average intra-day and inter-day variations (% R.S.D.) were 1.2 and 3.5%, respectively. A sample preparation method involving C8 and C18 solid phase extraction provided satisfactory recovery of the analytes in mouse urine. Each NNK metabolite was identified by its chromatographic retention time and specific fragmentation pattern. Since the carcinogenicity of NNK is related to its metabolism, the method described in this report should facilitate toxicological investigations into the carcinogenesis due to NNK exposure in the environment. 相似文献
17.
A multi-residue method using liquid-liquid extraction (LLE) followed by centrifugation, freezing and dispersive solid phase extraction (dispersive SPE) as clean up steps and gas chromatography with mass spectrometric detection has been developed for the determination of trace levels of 95 pesticides in soybean oil. LLE has been optimized to extract these pesticide residues from soybean oil by studying the effect of different partitions between (i) acetonitrile (MeCN) saturated with petroleum ether and a soybean oil solution dissolved in petroleum ether saturated with MeCN, (ii) partition between MeCN and a soybean oil solution dissolved in petroleum ether saturated with MeCN, (iii) partition between MeCN and a soybean oil solution dissolved in petroleum ether, (iv) partition between MeCN saturated with n-hexane and a soybean oil solution dissolved in n-hexane saturated with MeCN, (v) partition between MeCN and a soybean oil solution, (vi) partition between MeCN and a soybean oil solution dissolved in n-hexane and (vii) partition between MeCN and a soybean oil solution dissolved in mixture of acetone and n-hexane (3:2) to the highest recovery yield of pesticides and the lowest co-extract fat residue in the final extract. Experiments were carried out in order to study the efficiency of using centrifugation and freezing steps as well as the used of primary secondary amine (PSA), florisil, graphite carbon black (GCB) and C18 for dispersive SPE on clean up stages to minimize the co-extract fat. The recoveries obtained ranged from 80 to 114% and the relative standard deviation (RSDs) from 2 to 14% for spiking levels of 0.040, 0.080 and 0.160 mg kg− 1. The limits of quantification (LOQs) of almost all compounds were below the maximum residue limits (MRLs) established by the Korean legislations for soybean oil. 相似文献
18.
M. Isabel Pinto Gerhard Sontag R.J. Bernardino J.P. Noronha 《Microchemical Journal》2010,96(2):225-237
The control of pesticides in surface, drinking and groundwater is nowadays a real necessity. In the European Community, their concentration must comply with the established parametric and environmental quality standards (EQSs). Regarding the new legislation, this article updates the information concerning the monitoring of pesticides and the technical specifications for their measurement in water samples where ultra-sensitive analytical methods are required. For some compounds, like pesticides, there is still a need to improve the performance of the existing methods. High sensitive techniques like gas chromatography tandem mass spectrometry (GC–MS/MS) and liquid chromatography coupled with mass spectrometry (LC–MS) have been developed. However, for most of the substances present at trace and ultra-trace levels the extraction and preconcentration steps are so far essential for their detection. Advances at a micro scale have been made and different types of microextractions are being developed. Liquid-phase microextraction (LPME) is an example. The study of this technique has increased in the last years and some innovations have been recently reported for pesticides water analysis. This article reviews the new developed LPME-based techniques and compares its performance with the analytical specifications established for pesticides water monitoring. The results show that LPME-based techniques can be a promising tool to improve the nowadays performance of methods used in pesticides water control. 相似文献