首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a mathematical model for describing approximately the viscoelastic effects in non-Newtonian steady flows through a porous medium. The rheological behaviour of power law fluids is considered in the Maxwell model of elastic behaviour of the fluids. The equations governing the steady flow through porous media are derived and an analytical solution of these equations in the case of a simple flow system is obtained. The conditions for which the viscoelastic effects may become observable from the pressure distribution measurements are shown and expressed in terms of some dimensionless groups. These have been found to be relevant in the evaluation of viscoelastic effects in the steady flow through porous media.  相似文献   

2.
An asymptotically valid analytical solution is presented of the equations governing high Graetz number, high Pearson number, low Nahme number flows of power-law fluids in ducts with heated walls. Thus the flows are developing and the imposed difference between the wall temperature and the entry temperature of the fluid is sufficiently large to cause significant viscosity variations, but temperature differences due to heat generation by viscous dissipation are not. Three different duct geometries are considered: channels, pipes and discs. Estimates are made of the pressure drop, maximum temperature and flow-average temperature rise for flows in each of the geometries.  相似文献   

3.
4.
5.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small. Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.  相似文献   

7.
The slow flow of a viscous fluid through and around porous spheres is considered. The numerical simulation uses a special mixture of computational techniques: quadratic approximation and expansion in power series. The resulting calculations predict the evolution of the main features of the flow if the boundary conditions are varying, particularly if the tangential velocity is neglected or if a viscous filtration velocity is assumed at the sphere surface. The cases of full and hollow spheres with uniform and non uniform permeabilities are considered, the external impermeable walls of the flow being concentric spheres or cylinders. Some influence of viscoelastic properties of the fluid is also given.Nomenclature AA n , An, Bn, bn, Cn, cn, Dn constants of integration - C n (t) Gegenbauer functions with degree n and order –1/2 - e shell thickness - K, K* permeability - P n (t) Legendre functions - Q v volumetric rate of flow - p, p 0, p e pressure, far away pressure, average pressure - R* sphere radius - r, spherical coordinates - Re Reynolds' number (see equation 37) - s, t sinus and cosinus - V 0 * uniform velocity - v velocity component - We Weissenberg's number (see equation (37)) - permeability coefficient - thickness coefficient - structural coefficient - diameter ratio sphere-cylinder - * dynamic viscosity of the fluid - stream functions - normal stress ( rr ) - tangential stress ( ) - 0 * relaxation time of the fluid  相似文献   

8.
We investigate the unsteady flow of power law fluids through porous media. We determine the pressure and velocity distributions when fluid is injected into a porous medium of infinite extend. We obtain solutions of progressive-wave type by means of a translation. We determine the necessary conditions for the existence of this type of solution regarding the prescribed pressure of injection and the initial pressure and velocity distributions in the porous medium. Similarity solutions are also obtained for the cases of a prescribed time dependent pressure of injection and a prescribed constant flow rate of injection. In the latter case the resulting ordinary differential equation is solved numerically. Point source solutions are also obtained for the case when an amount of fluid is instantaneously injected into the porous media. In all cases the rheological effects are presented and analyzed.  相似文献   

9.
We study the effect of fiber additives on rheology and sedimentation of particle suspensions in a base viscoelastic suspending fluid in the case when the suspension is subjected to shear flow. We found experimentally that fiber additives (3–6 mm in length and 8–12 μm in diameter at a mass fraction of 0–0.4%) increase the suspension viscosity and retard the particle sedimentation significantly. At the same mass concentration, long and thin fibers reduce the sedimentation velocity and increase the viscosity to a much greater extent than short and thick fibers. We revealed that both rheology and sedimentation are controlled by a single conformational parameter (overlap parameter) defined as the number of fibers per unit volume multiplied by fiber length cubed.  相似文献   

10.
This article considers the effects of the side walls on the unsteady flow of an incompressible viscous fluid in a duct of uniform cross-section. In order to show the effects of the side walls, three illustrative examples are given. They are: the starting flow in a duct of semicircular cross-section, the starting flow in a duct of rectangular cross-section and the starting flow in a duct of circular cross-section. The velocity distributions and the volume fluxes obtained for these flows are compared and it is shown that the flow in a duct of semicircular cross-section reaches steady state earlier than those for the flow in a duct of circular cross-section and for the flow in a duct of square cross-section. It is found that there are remarkable effects of the side walls of a duct on the required time to attain the asymptotic values of flow properties.  相似文献   

11.
An experimental investigation of sedimentation of single particles and concentrated suspensions in Couette flows of viscous and viscoelastic fluids is presented. With the passage from viscous to viscoelastic fluids, a slowing down of the sedimentation was observed. The sedimentation of suspensions in viscoelastic fluids accelerated with increase in the suspension concentration. The development of instabilities during the sedimentation was detected.  相似文献   

12.
We present results of a computational study of visco-plastically lubricated plane channel multi-layer flows, in which the yield stress fluid layers are unyielded at the interface. We demonstrate that symmetric 3-layer flows may be established for wide ranges of viscosity ratio (m), Bingham number (B) and interface position (yi), for Reynolds numbers Re  100. Here an inner Newtonian layer is sandwiched between 2 layers of Bingham fluid. Results are presented illustrating the variation of development length with the main dimensionless parameters and for different inlet sizes. We also show that these flows may be initiated by injecting either fluid into a steady flow of the other fluid. The flows are established quicker when the core fluid is injected into a channel already full of the outer fluid. In situations where the inner fluid flow rate is dominant we observed inertial symmetry breaking in the symmetric start-up flows as Re was increased. Asymmetry is also observed in studying temporal nonlinear stability of these flows, which appear stable up to moderate Re and significant amplitudes. In general the flows destabilize at lower Re and perturbation amplitudes than do the analogous core-annular pipe flows, but 1–1 comparison is hard. When the flow is stable the decay characteristics are very similar to those of the pipe flows. In the final part of the paper we explore more exotic flow effects. We show how flow control could be used to position layers asymmetrically within the flow, and how this effect might be varied transiently. We demonstrate that more complex layered flows can be stably achieved, e.g. a 7-layered flow is established. We also show how a varying inlet position can be used to “write” in the yield stress fluid: complex structures that are advected with the flow and encapsulated within the unyielded fluid.  相似文献   

13.
J. Zhu 《Rheologica Acta》1990,29(5):409-415
Analytical solutions are obtained for the free surface cell model of packed beds using a third order fluid. Second order perturbed results indicate a substantial increase in resistance to the flow of a viscoelastic fluid through a packed bed. This predicted increase is in good agreement with experimental findings.  相似文献   

14.
15.
A study is made of two-dimensional transonic flows of gas around an airfoil in the working part of a wind tunnel with porous walls. The values of the flow parameters are determined by the numerical solution of a boundary-value problem for the equation of the velocity potential; this problem simulates the gas flow around the profile in the tunnel with porous walls. The obtained results are then used to construct an asymptotic theory of the influence of the wind-tunnel height and the Mach number M of the flow in it on the characteristics of the flow around the airfoil.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1980.  相似文献   

16.
The present work develops a numerical method for the solution of rotating internal weakly viscoelastic flows in rectangular ducts for dimensionless parameters such as the Reynolds, Rossby and Weissenberg numbers, taken respectively in the intervals between 171 and 12000, 0.047 and 1/12 and up to 1/10000. It is shown that the usual counter‐rotating double‐vortex configuration of secondary flow breaks down with the increase of the Reynolds number (over the threshold of 171). For higher Reynolds numbers such as 7500 and 12000 the secondary flow diffuses to the interior of the duct where it assumes a fully developed configuration and the transition to the turbulence structure is observed. The Sobolev norms increase almost proportionally to the increase of the Reynolds number, and play an essential role for more complex problems involving transition to turbulence modelling. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of thermal entrance length, polymer degradation and solvent chemistry were found to be critically important in the determination of the drag and heat transfer behavior of viscoelastic fluids in turbulent pipe flow. The minimum heat transfer asymptotic values in the thermally developing and in the fully developed regions were experimentally determined for relatively high concentration solutions of heat transfer resulting in the following correlations: $$\begin{gathered} j_H = 0.13\left( {\frac{x}{d}} \right)^{ - 0.24} \operatorname{Re} _a^{ - 0.45} thermally developing region \hfill \\ x/d< 450 \hfill \\ j_H = 0.03 \operatorname{Re} _a^{ - 0.45} thermally developed region \hfill \\ x/d< 450 \hfill \\ \end{gathered} $$ For dilute polymer solutions the heat transfer is a function ofx/d, the Reynolds number and the polymer concentration. The Reynolds analogy between momentum and heat transfer which has been widely used in the literature for Newtonian fluids is found not to apply in the case of drag-reducing viscoelastic fluids.  相似文献   

18.
19.
Summary The concept of an elastic boundary layer is proposed to explain certain anomalous transport phenomena which occur during rapid external flows of viscoelastic fluids past immersed objects. Reported experimental observations are interpreted by using models based on this concept. Particularly, data on velocity independent drag and heat transfer coefficients for flow of dilute polymer solutions past tiny cylinders are satisfactorily correlated.
Zusammenfassung Es wird das Konzept einer elastischen Grenzschicht entworfen, um gewisse anomale Transportphänomene zu erklären, welche bei schnellen Strömungen viskoelastischer Flüssigkeiten um eingetauchte Körper auftreten. Die berichteten experimentellen Beobachtungen werden mit Hilfe von Modellen interpretiert, die auf diesem Konzept basieren. Insbesondere werden Daten über geschwindigkeitsunabhängige Widerstands- und Wärmeübertragungs-Koeffizienten bei der Strömung verdünnter Polymerlösungen um dünne Zylinder befriedigend korreliert.

A, B numerical constants - A 1,A 2 surface areas - C D drag coefficient - D cylinder diameter - F hoop force - h heat transfer coefficient - k thermal conductivity - M molecular weight - Nu Nusselt number - R gas constant - T absolute temperature - u x-component of the velocity - U free stream velocity - x, y Cartesian coordinates - shear rate - boundary layer thickness - 0 elastic boundary layer thickness - relaxation time - µ viscosity - v kinematic viscosity - [] intrinsic viscosity - density - normal stress difference - shear stress With 3 figures  相似文献   

20.
G. V. Kireiko 《Fluid Dynamics》1984,19(6):1001-1004
The investigation of the occurrence of a transition from the laminar to the turbulent flow regime in weak polymer solutions is of great practical interest. Experimental data indicate both an increase in flow stability and an occurrence of early turbulence [1]. Paper [2] explains the discrepancy in the experimental data for the numerical investigation of the first-mode symmetric perturbations, which are unstable for a Newtonian fluid. Paper [3] shows that other modes also become unstable in the case of the flow of a viscoelastic Maxwellian fluid in a channel. These features of the hydrodynamic stability of viscoelastic fluids indicate a significant rearrangement of the small perturbation spectrum. In the present paper, the perturbation spectrum for plane-parallel flows of viscoelastic Oldroyd and Maxwellian fluids is investigated at small Reynolds numbers, and at large and small wave numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 164–167, November–December, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号