首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Changes in UV sensitivity during spore germination of Bacillus subtilis mutants possessing various defects in DNA repair capacities were analysed in order to estimate the yield of the DNA photoproducts at the transient, UV resistant stage which occurs in the process of germination. It was concluded that the yield of the spore-specific photoproduct (5-thyminyl-5,6-dihydrothymine, TDHT) at the transient stage was only about 3% of that in dormant spores and the yield of the cyclobutane-type pyrimidine dimers at this stage was about 10% (or less) of that in germinated spores.  相似文献   

2.
The AOAC sporicidal method uses as a standard the resistance of spores on carriers to 2.5N HCl. This resistance is variable at exposure times ranging from 2 to 20 min. The method described in this paper uses a glutaraldehyde standard and distinguishes various levels of sporicidal activity in the presence of 1-5% glutaraldehyde by using appropriate spore strains, spore preparations, and spore levels. The resistances of 2 Bacillus subtilis 19659 spore preparations cultured in 10% Columbia broth plus manganese and nutrient agar plus minerals, as well as that of B. subtilis var. niger cultured on Lab-Lemco agar, were tested. T-soy broth was a better recovery medium than fluid thioglycollate or modified fluid thioglycollate for B. subtilis 19659 spores exposed to HCl. Sporicidal tests were done on B. subtilis 19659 spores with 2 types of spore preparations. A commercial glutaraldehyde germicide was used for comparison of the sporicidal activity of the glutaraldehyde standard. Two strains of B. subtilis spores and 4 levels of spores (20,000-80,000, 100,000-400,000, 500,000-800,000, and 1,000,000 and up) were removed from check penicylinders from the same batches used for sporicidal tests. B. subtilis var. niger spores were the most resistant to HCl, while B. subtilis 19659 spores were more resistant to glutaraldehyde. Sporicidal activities of a commercial germicide containing 2.5% glutaraldehyde with additives and another containing 5% glutaraldehyde in phosphate buffer were similar. Both totally destroyed high levels of B. subtilis 19659 spores cultured in 10% Columbia broth plus manganese. Results indicate that use of a glutaraldehyde standard, calibrated numbers of spores on penicylinders (bioindicators), and appropriate spore strains and preparations can reduce the variability of sporicidal testing of commercial germicides.  相似文献   

3.
We move beyond antibody-antigen binding systems and demonstrate that short peptide ligands can be used to efficiently capture Bacillus subtilis (a simulant of Bacillus anthracis) spores in liquids. On an eight-cantilever array chip, four cantilevers were coated with binding peptide (NHFLPKV-GGGC) and the other four were coated with control peptide (LFNKHVP-GGGC) for reagentless detection of whole B. subtilis spores in liquids. The peptide-ligand-functionalized microcantilever chip was mounted onto a fluid cell filled with a B. subtilis spore suspension for approximately 40 min; a 40 nm net differential deflection was observed. Fifth-mode resonant frequency measurements were also performed before and after dipping microcantilever arrays into a static B. subtilis solution showing a substantial decrease in frequency for binding-peptide-coated microcantilevers as compared to that for control peptide cantilevers. Further confirmation was obtained by subsequent examination of the microcantilever arrays under a dark-field microscope. Applications of this technology will serve as a platform for the detection of pathogenic organisms including biowarfare agents.  相似文献   

4.
L Kong  P Setlow  YQ Li 《The Analyst》2012,137(16):3683-3689
The core of dormant bacterial spores suspended in water contains a large depot of dipicolinic acid (DPA) chelated with divalent cations, predominantly Ca(2+) (CaDPA), and surrounded by water molecules. Since the intensities of the vibration bands of CaDPA molecules depend significantly on the water content in the CaDPA's environment, the Raman spectra of CaDPA in spores may allow the determination of the spore core's hydration state. We have measured Raman spectra of single spores of three Bacillus species in different hydration states including the spores suspended in water, air-dried and vacuum-dried. As a comparison, we also measured the Raman spectra of CaDPA and DPA in different forms including in aqueous solution, and as amorphous powder and crystalline form. We also monitored changes in Raman spectra of an individual spore during dehydration under vacuum. The results indicated that (1) the state of CaDPA in the core of a spore suspended in water is close to an amorphous solid or a glassy state, but still mixed with water molecules; (2) the ratio of intensities of Raman bands at 1575 and 1017 cm(-1) (I(1575)/I(1017)) is sensitive to the water content in the CaDPA's environment; (3) variations in I(1575)/I(1017) are small (~4%) in a population of dormant Bacillus spores suspended in water; and (4) the I(1575)/I(1017) ratio increases significantly during dehydration under vacuum. Consequently, measurement of the I(1575)/I(1017) ratio of CaDPA in spores may allow a qualitative estimation of the degree of hydration of the bacterial spore's core.  相似文献   

5.
Sporicidal test results obtained from carriers inoculated with 4 types of defined Bacillus subtilis spore preparations were compared with the standard AOAC sporicidal test using soil extract nutrient broth (SENB) B. subtilis 19659 spores. Recoveries of spores inoculated on penicylinders from B. subtilis clean spores (washed and suspended in water) and B. subtilis 19659 spores inoculated from culture filtrates according to the AOAC method were compared. Spores were exposed to 6 concentrations (0.5-3.0% w/v) of glutaraldehyde in phosphate buffer (pH 7.5) for 10 h. Concentrations were established by titrimetry and liquid chromatography. Recoveries of surviving spores were determined for 3 types of clean B. subtilis var. niger preparations, one clean B. subtilis 19659 preparation, and the SENB B. subtilis 19659 filtrates. Spore carriers, inoculated by the standard AOAC protocol, resulted in as much as a 2-log number difference in runs 1-12, but not more than 0.5 log number for each clean spore preparation. The SENB spores varied most in resistance to glutaraldehyde, with no growth in recovery media from 3 different batches of 1, 1.5, and 2% glutaraldehyde. Separate batches of SENB preparations of B. subtilis 19659 were resistant and destroyed by 1.0% glutaraldehyde, with 3.98 and 6.0 log numbers of spores on penicylinders, respectively. Clean spore preparations of B. subtilis 19659 on porcelain penicylinders were more resistant to glutaraldehyde than were SENB spores. Nutrient agar/Mg/Ca and nutrient agar/Mg spore preparations of B. subtilis var. niger showed the most uniform resistance to glutaraldehyde. Spores with calcium added showed increased resistance to glutaraldehyde. B. subtilis 19659 spores from the Columbia broth spore preparation were the most resistant and were recovered after exposure to 3.0% glutaraldehyde.  相似文献   

6.
Ion-sensitive hydrogel is regarded as an ionic reservoir, i.e., a system capable of changing the external pH or ionic strength by accumulating or releasing ions. The concept of a hydrogel ionic reservoir was demonstrated for hydrogel particles of three different size ranges: macrogel (1000-6000 microm), microgel (approximately 20-200 microm), and nanogel (approximately 0.2 microm). Ion sensitivity of poly(N-isopropylacrylamide-co-1-vinylimidazole) (PNIPA-VI) microgels with imidazolyl (ionizable) groups was confirmed by the pH dependence of their volume, while nanogels were characterized by dynamic light scattering. On the contrary, the volume of poly(N-isopropylacrylamide) (PNIPA) microgels without ionizable groups was pH independent in the whole range of pH from 10 to 2. Four distinct regions of pH-behavior were observed for PNIPA-VI hydrogel micro- and nanoparticles using potentiometric titration of their suspensions. Time-resolved measurements of ion concentrations in the suspension of hydrogel particles revealed a substantial difference in kinetics of pH equilibration for (i) ion-sensitive hydrogels (PNIPA-VI) vs hydrogels without ionizable groups (PNIPA) and (ii) PNIPA-VI hydrogels of different sizes. On the basis of the experimental observations, a two-step mechanism affecting the kinetics of proton uptake into the hydrogel particles with ionizable groups was proposed: (1) fast binding of ions to the immediate surface of each particle and (2) a slower successive diffusion of bound sites into the next inner layer of polymer network. In accord with the mechanism proposed, a quasi-chemical kinetic model of pH relaxation to equilibrium was developed to fit the experimental data for the time course of proton uptake by macro-, micro-, and nanogels into two exponentials with the characteristic times of tau(1) and tau(2). We believe the same kinetic model will be pertinent to describe phenomenological and molecular mechanisms controlling proton transport in/out bacteria, cells, organelles, drug delivery vehicles, and other natural or artificial multifunctional ionic containers. The approach can be easily extended for the other ions (e.g., Na(+), K(+), and Ca(2+)).  相似文献   

7.
The main lesion produced in DNA by UV-C irradiation of spores of Bacillus subtilis is 5-thyminyl-5,6-dihydrothymine (spore photoproduct [SP]). In contrast, cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP) are the main photolesions in other cell types. The novel photochemistry of spore DNA is accounted for in part by its reduced hydration, but largely by the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP). Using high-performance liquid chromatography-mass spectrometry analysis of the photoproducts, we showed that in wild-type B. subtilis spores (1) UV-C irradiation generates almost exclusively SP with little if any CPD and 6-4PP; (2) the SP generated is approximately 99% of the intrastrand derivative, but approximately 1% is in the interstrand form; and (3) there is no detectable formation of the SP analog between adjacent C and T residues. UV-C irradiation of spores lacking the majority of their alpha/beta-type SASP gave less SP than with wild-type spores and significant levels of CPD and 6-4PP. The binding of an alpha/beta-type SASP to isolated DNA either in dry films or in aqueous solution led to a large decrease in the yield of CPD and 6-4PP, and a concomitant increase in the yield of SP, although levels of interstrand photoproducts were extremely low.  相似文献   

8.
Differentiation between species of similar biological structure is of critical importance in biosensing applications. Here, we report specific detection of Bacillus anthracis (BA) spores from that of close relatives, such as B. thuringiensis (BT), B. cereus (BC), and B. subtilis (BS) by varying the flow speed of the sampling liquid over the surface of a piezoelectric microcantilever sensor (PEMS). Spore binding to the anti-BA spore IgG coated PEMS surface is determined by monitoring the resonance frequency change in the sensor's impedance vs. frequency spectrum. Flow increases the resonance frequency shift at lower flow rates until the impingement force from the flow overcomes the binding strength of the antigen and decreases the resonance frequency shift at higher flow rates. We showed that the change from increasing to decreasing resonance frequency shift occurred at a lower fluid flow speed for BT, BC, and BS spores than for BA spores. This trend reduces the cross reactivity ratio of BC, BS, and BT to the anti-BA spore IgG immobilized PEMS from around 0.4 at low flow velocities to less than 0.05 at 3.8 mm s(-1). This cross reactivity ratio of 0.05 was essentially negligible considering the experimental uncertainty. The use of the same flow that is used for detection to further distinguish the specific binding (BA to anti-BA spore antibody) from nonspecific binding (BT, BC, and BS to anti-BA spore antibody) is unique and has great potential in the detection of general biological species.  相似文献   

9.
Abstract— Populations of radiation sensitive spores ( Bacillus subtilis UVSSP), vegetative bacteria ( E. coli K12-AB2480) and bacteriophage ( E. coli phage T4vx) have been considered as possible biological dosimeters to integrate DNA-absorbed solar energy incident on the Earth's surface.
Irradiation of spores of B. subtilis UVSSP with monochromatic far- and near-UV radiation and solar radiation have indicated that these radiations have a similar efficiency in inducing spore photoproducts per lethal event. Action spectra for lethality taken with the three radiation sensitive biological systems show a similar pattern in each case with a broad shoulder in the 334–365 nm wavelength region. This finding indicates a relatively high susceptibility of the DNA to chemical alteration in this wavelength range. Although less sensitive to sunlight than the other biological systems tested, the B. subtilis UVSSP spore mutant has the advantage of temperature independence of inactivation, stability between irradiation and assay and a simple, reproducible irradiation and assay procedure. Field measurements have supported the utility of this mutant as a sunlight dosimeter.  相似文献   

10.
We have utilized atomic force microscopy (AFM) to visualize the native surface topography and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was approximately 8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to approximately 200 nm. The lattice constant of the honeycomb structures was approximately 9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing "fingerprints" of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.  相似文献   

11.
Transmission electron microscopy (TEM) studies in the 1960s and early 1970s using conventional thin section and freeze fracture methodologies revealed ultrastructural bacterial spore appendages. However, the limited technology at that time necessitated the time-consuming process of imaging serial sections and reconstructing each structure. Consequently, the distribution and function of these appendages and their possible role in colonization or pathogenesis remained unknown. By combining high resolution field emission electron microscopy with TEM images of identical bacterial spore preparations, we have been able to obtain images of intact and sectioned Bacillus and Clostridial spores to clearly visualize the appearance, distribution, resistance (to trypsin, chloramphenicol, and heat), and participation of these structures to facilitate attachment of the spores to glass, agar, and human cell substrates. Current user-friendly commercial field emission scanning electron microscopes (FESEMs), permit high resolution imaging, with high brightness guns at lower accelerating voltages for beam sensitive intact biological samples, providing surface images at TEM magnifications for making direct comparisons. For the first time, attachment structures used by pathogenic, environmental, and thermophile bacterial spores could be readily visualized on intact spores to reveal how specific appendages and outer spore coats participated in spore attachment, colonization, and invasion.  相似文献   

12.
Bacillus subtilis spores were exposed in vacuo to monochromatic UV radiation from synchrotron radiation in the wavelength range of 150 nm to 250 nm. Survival and frequency of mutation to histidine-independent reversion were analysed for three types of spores differing in DNA-repair capabilities. UVR spores (wild-type DNA repair capability) exhibited nearly equal sensitivity to the lethal effects of far-UV (220 nm and 250 nm) and of vacuum-UV radiation (150 and 165 nm), but showed marked resistance to 190 nm radiation. UVS spores (excision-repair and spore-repair deficient) and UVP spores (a DNA polymerase I-defective derivative of UVS) exhibited similar action spectra; pronounced sensitivity at 250 and 220 nm, insensitivity at 190 nm and a gradual increase of the sensitivity as the wavelength decreased to 165 nm. In all strains, the action spectra for mutation induction paralleled those for the inactivation, indicating that vacuum-UV radiation induced lethal and mutagenic damages in the spore DNA. The insensitivity of the spores to wavelengths around 190 nm may be explicable by assuming that radiation is absorbed by materials surrounding the core in which DNA is situated.  相似文献   

13.
Spores of Bacillus subtilis are approximately ten times less likely to survive UV light irradiation in a vacuum than under atmospheric conditions. Photoproduct formation was studied in spores irradiated under ultrahigh vacuum (UHV) conditions and in spores irradiated at atmospheric pressure. In addition to the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT), which is produced in response to irradiation at atmospheric pressure, two additional photoproducts, known as the cis-syn and trans-syn isomers of thymine dimer, are produced on irradiation in vacuo. The spectral efficiencies for photoproduct formation in spores are reduced under vacuum conditions compared with atmospheric conditions by a factor of 2-6, depending on the wavelength. Because formation of TDHT does not increase after irradiation in vacuo, TDHT cannot be responsible for the observed vacuum effect. Vacuum specific photoproducts may cause a synergistic response of spores to the simultaneous action of UV light and UHV. An increased quantum efficiency, destruction of repair systems and formation of irreparable lesions are postulated for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuo.  相似文献   

14.
A rapid detection protocol suitable for use by first-responders to detect anthrax spores using a low-cost, battery-powered, portable Raman spectrometer has been developed. Bacillus subtilis spores, harmless simulants for Bacillus anthracis, were studied using surface-enhanced Raman spectroscopy (SERS) on silver film over nanosphere (AgFON) substrates. Calcium dipicolinate (CaDPA), a biomarker for bacillus spores, was efficiently extracted by sonication in nitric acid and rapidly detected by SERS. AgFON surfaces optimized for 750 nm laser excitation have been fabricated and characterized by UV-vis diffuse reflectance spectroscopy and SERS. The SERS signal from extracted CaDPA was measured over the spore concentration range of 10(-14)-10(-12) M to determine the saturation binding capacity of the AgFON surface and to calculate the adsorption constant (Kspore=1.7 x 10(13) M(-1)). At present, an 11 min procedure is capable of achieving a limit of detection (LOD) of approximately 2.6 x 10(3) spores, below the anthrax infectious dose of 10(4) spores. The data presented herein also demonstrate that the shelf life of prefabricated AgFON substrates can be as long as 40 days prior to use. Finally, these sensing capabilities have been successfully transitioned from a laboratory spectrometer to a field-portable instrument. Using this technology, 10(4) bacillus spores were detected with a 5 s data acquisition period on a 1 month old AgFON substrate. The speed and sensitivity of this SERS sensor indicate that this technology can be used as a viable option for the field analysis of potentially harmful environmental samples.  相似文献   

15.
Effective decontamination of environments contaminated by Bacillus spores remains a significant challenge since Bacillus spores are highly resistant to killing and could plausibly adhere to many non-biological as well as biological surfaces. Decontamination of Bacillus spores can be significantly improved if the chemical basis of spore adherence is understood. In this research, we investigated the surface adhesive properties of Bacillus subtilis and Bacillus anthracis spores. The spore thermodynamic properties obtained from contact angle measurements indicated that both species were monopolar with a preponderance of electron-donating potential. This was also the case for spores of both species missing their outer layers, due to mutation. Transport of wild type and mutant spores of these two species was further analyzed in silica sand under unsaturated water conditions. A two-region solute transport model was used to simulate the spore transport with the assumption that the spore retention occurred within the immobile region only. Bacillus spore adhesion to the porous media was related to the interactions between the spores and the porous media. Our data indicated that spore surface structures played important roles in spore surface properties, since mutant spores missing outer layers had different surface thermodynamic and transport properties as compared to wild type spores. The changes in surface thermodynamic properties were further evidenced by infrared spectroscopy analysis.  相似文献   

16.
Five types of Bacillus subtilis spores (UVR, UVS, UVP, RCE, and RCF) differing in repair and/or recombinational capabilities were exposed to monochromatic radiations at 13 wavelengths from 50 to 300 nm in vacuum. An improved biological irradiation system connected to a synchrotron radiation source was used to produce monochromatic UV radiation in this extended wavelength range with sufficient fluence to inactivate bacterial spores. From the survival curves obtained, the action spectra for the inactivation of the spores were depicted. Recombination-deficient RCE (recE) and RCF (recF) spores were more sensitive than the wild-type UVR spores in the entire range of wavelengths. This was considered to mean that DNA was the major target for the inactivation of the spores. Vacuum-UV radiations of 125-175 nm were effective in killing the spores, and distinct peaks of the sensitivity were seen with all types of the spores. Insensitivities at 190 and 100 nm were common to all five types of spores, indicating that these wavelengths were particularly impenetrant and absorbed by the outer layer materials. The vacuum-UV peaks centering at 150 nm were prominent in the spores defective in recombinational repair, while the far-UV peaks at around 235 and 270 nm were prominent in the UVS (uvrA ssp) and UVP (uvrA ssp polA) spores deficient in removal mechanisms of spore photoproducts. Thus, the profiles of the action spectra were explained by three factors; the penetration depth of each radiation in a spore, the efficiency of producing DNA damage that could cause inactivation, and the repair capacity of each type of spore.  相似文献   

17.
Abstract— In order to determine the timing of the change in the state of DNA in bacterial spores during the course of germination, L-alanine-induced germination of Bacillus cereus spores was interrupted by 0.3 M CaCl2 as an inhibitor, and the resulting semi-refractile spores (spores at the end of the first phase of germination) were examined on the UV-resistance and the photoproduct formation.
Upon UV-irradiation, these spores, still having a semi-refractile core as observed under a phase-contrast microscope, gave rise to mainly the cyclobutane-type thymine dimer. It was concluded that change in the state of the spore DNA occurs early in the process of germination, i.e. before the refractility of the core was lost.
It was also found that CaCl2 markedly prolonged the duration of the transient UV-resistant stage.  相似文献   

18.
Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied for the characterization of Bacillus anthracis spore biomarkers. B. anthracis spores were extracted under a simple procedure, followed by linear mode analysis, using sinapinic acid as the matrix. Several markers with a mass range of 4-7 kDa were detected in three B. anthracis strains: Vollum, Sterne and V770-NP1-R. Similar spectra were also obtained for spore extracts of two members of the B. cereus group: B. thuringiensis and B. cereus, but not for B. mycoides, B. subtilis or B. licheniformis, suggesting that these markers are specific to closely related members of the B. cereus group. When alpha-cyano-4-hydroxycinnamic acid was used as the matrix, at least four additional new markers within a mass range of 2-4 kDa could be detected in all B. anthracis spore extracts. These markers, corresponding to a molecular weight of 2528.3, 2792.4, 3077.4, and 3590.7 Da, have not been observed in extracts of the three closely related Bacillus species - B. cereus, B. thuringiensis and B. mycoides. These unique B. anthracis biomarkers, which were isotopically resolved and reproducibly detected in the highly accurate MALDI-TOFMS reflectron mode, may be useful as a basis for rapid and specific identification of B. anthracis strains.  相似文献   

19.
A novel, affinity-augmented, bacterial spore-imprinted, bead material was synthesized, based on a procedure developed for vegetative bacteria. The imprinted beads were intended as a front-end spore capture/concentration stage of an integrated biological detection system. Our approach involved embedding bead surfaces with Bacillus thuringiensis kurstaki (Bt) spores (as a surrogate for Bacillus anthracis) during synthesis. Subsequent steps involved lithographic deactivation using a perfluoroether; spore removal to create imprint sites; and coating imprints with the lectin, concanavalin A, to provide general affinity. The synthesis of the intended material with the desired imprints was verified by scanning electron and confocal laser-scanning microscopy. The material was evaluated using spore-binding assays with either Bt or Bacillus subtilis (Bs) spores. The binding assays indicated strong spore-binding capability and a robust imprinting effect that accounted for 25% additional binding over non-imprinted controls. The binding assay results also indicated that further refinement of the surface deactivation procedure would enhance the performance of the imprinted substrate.  相似文献   

20.
A small and robust dosimeter for determining the biologically effective dose of ambient UV radiation has been developed using UV-sensitive mutant spores of Bacillus subtilis strain TKJ6312. A membrane filter with four spots of the spores was snapped to a slide mount. The slide was wrapped and covered with two or more layers of polyethylene sheet to protect the sample from rain and snow and to reduce monthly-cumulative doses within the measurable range. From 1999, monthly data were collected at 17 sites for more than 1 year, and data for 4 to 6 consecutive years were obtained from 12 sites. Yearly total values of the spore inactivation dose (SID) ranged from 3200 at subarctic Oulu to 96000 at tropical Denpasar, and the mean yearly values of SID exhibited an exponential dependence on latitude in both hemispheres with a doubling for about every 14 degrees of change. During the observation period, increasing trends of UV doses have been observed at all sites with more than 5 years of data available. Year-to-year variations at high and middle latitude sites are considered due mostly to climatic variation. At three tropical sites, negative correlations between the yearly doses and the column ozone amounts were observed. The results verified the applicability of spore dosimetry for global and long-time monitoring of solar UV radiation, in particular at tropical sites where no monitoring is taking place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号