首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Asymptotic expansions of the global error of numerical methods are well-understood, if the differential equation is non-stiff. This paper is concerned with such expansions for the implicit Euler method, the linearly implicit Euler method and the linearly implicit mid-point rule, when they are applied tostiff differential equations. In this case perturbation terms are present, whose dominant one is given explicitly. This permits us to better understand the behaviour ofextrapolation methods at stiff differential equations. Numerical examples, supporting the theoretical results, are included.  相似文献   

2.
This paper studies partitioned linearly implicit Runge-Kutta methods as applied to approximate the smooth solution of a perturbed problem with stepsizes larger than the stiffness parameter. Conditions are supplied for construction of methods of arbitrary order. The local and global error are analyzed and the limiting case 0 considered yielding a partitioned linearly implicit Runge-Kutta method for differential-algebraic equations of index one. Finally, some numerical experiments demonstrate our theoretical results.  相似文献   

3.
Summary In this paper, a general class ofk-step methods for the numerical solution of ordinary differential equations is discussed. It is shown that methods with order of consistencyq have order of convergence (q+1) if a very simple condition is satisfied. This result gives a new aspect to previous results of Spijker; it also serves as a starting point for a new theory of cyclick-step methods, completing an approach of Donelson and Hansen. It facilitates the practical determination of high-order cyclick-step methods, especially of stiffly stable,k-step methods.  相似文献   

4.
Summary C-polynomials for rational approximation to the exponential function was introduced by Nørsett [7] to study stability properties of one-step methods. For one-step collocation methods theC-polynomial has a very simple form. In this paper we studyC-polynomials for multistep collocation methods and obtain results that generalize those in the one-step case, and provide a way to analyze linear stability of such methods.  相似文献   

5.
Summary For the numerical solution of initial value problems of ordinary differential equations partitioned adaptive Runge-Kutta methods are studied. These methods consist of an adaptive Runge-Kutta methods for the treatment of a stiff system and a corresponding explicit Runge-Kutta method for a nonstiff system. First we modify the theory of Butcher series for partitioned adaptive Runge-Kutta methods. We show that for any explicit Runge-Kutta method there exists a translation invariant partitoned adaptive Runge-Kutta method of the same order. Secondly we derive a special translaton invariant partitioned adaptive Runge-Kutta method of order 3. An automatic stiffness detection and a stepsize control basing on Richardson-extrapolation are performed. Extensive tests and comparisons with the partitioned RKF4RW-algorithm from Rentrop [16] and the partitioned algorithm LSODA from Hindmarsh [9] and Petzold [15] show that the partitoned adaptive Runge-Kutta algorithm works reliable and gives good numericals results. Furthermore these tests show that the automatic stiffness detection in this algorithm is effective.  相似文献   

6.
Summary The structure of the global discretization error is studied for the implicit midpoint and trapezoidal rules applied to nonlinearstiff initial value problems. The point is that, in general, the global error contains nonsmooth (oscillating) terms at the dominanth 2-level. However, it is shown in the present paper that for special classes of stiff problems these nonsmooth terms contain an additional factor (where-1/ is the magnitude of the stiff eigenvalues). In these cases a full asymptotic error expansion exists in thestrongly stiff case ( sufficiently small compared to the stepsizeh). The general case (where the oscillating error components areO(h 2) and notO(h 2)) and applications of our results (extrapolation and defect correction algorithims) will be studied in separate papers.  相似文献   

7.
Summary In this paper the author considers a linear test delay differential equation with non-constant coefficients related to the definitions of PN and GPN-stability for numerical methods. He defines stability properties for an ordinary differential equation together with stability properties of interpolants for numerical methods and in this way he gives sufficient conditions for GPN-stability.This work was supported by the Italian M.P.I. (funds 40%) and by C.N.R.  相似文献   

8.
Summary We investigate contractivity properties of explicit linear multistep methods in the numerical solution of ordinary differential equations. The emphasis is on the general test-equation , whereA is a square matrix of arbitrary orders1. The contractivity is analysed with respect to arbitrary norms in thes-dimensional space (which are not necessarily generated by an inner product). For given order and stepnumber we construct optimal multistep methods allowing the use of a maximal stepsize.This research has been supported by the Netherlands organisation for scientific research (NWO)  相似文献   

9.
Summary This paper is concerned with the numerical solution of stiff initial value problems for systems of ordinary differential equations using Runge-Kutta methods. For these and other methods Frank, Schneid and Ueberhuber [7] introduced the important concept ofB-convergence, i.e. convergence with error bounds only depending on the stepsizes, the smoothness of the exact solution and the so-called one-sided Lipschitz constant . Spijker [19] proved for the case <0 thatB-convergence follows from algebraic stability, the well-known criterion for contractivity (cf. [1, 2]). We show that the order ofB-convergence in this case is generally equal to the stage-order, improving by one half the order obtained in [19]. Further it is proved that algebraic stability is not only sufficient but also necessary forB-convergence.This study was completed while this author was visiting the Oxford University Computing Laboratory with a stipend from the Netherlands Organization for Scientific Research (N.W.O.)  相似文献   

10.
Summary In this paper we consider an extension to nonlinear algebraic systems of the class of algorithms recently proposed by Abaffy, Broyden and Spedicato for general linear systems. We analyze the convergence properties, showing that under the usual assumptions on the function and some mild assumptions on the free parameters available in the class, the algorithm is locally convergent and has a superlinear rate of convergence (per major iteration, which is computationally comparable to a single Newton's step). Some particular algorithms satisfying the conditions on the free parameters are considered.  相似文献   

11.
Summary This paper deals with the convergence of nonstationary quasilinear multistep methods with varying step, used for the numerical integration of Volterra functional differential equations. A Perron type condition (appearing in the differential equations theory) is imposed on the increment function. This gives a generalization of some results of Tavernini ([19–21]).  相似文献   

12.
Summary GeneralizedA()-stable Runge-Kutta methods of order four with stepsize control are studied. The equations of condition for this class of semiimplicit methods are solved taking the truncation error into consideration. For application anA-stable and anA(89.3°)-stable method with small truncation error are proposed and test results for 25 stiff initial value problems for different tolerances are discussed.  相似文献   

13.
Summary Two Rosenbrock-Wanner type methods for the numerical treatment of differential-algebraic equations are presented. Both methods possess a stepsize control and an index-1 monitor. The first method DAE34 is of order (3)4 and uses a full semi-implicit Rosenbrock-Wanner scheme. The second method RKF4DA is derived from the Runge-Kutta-Fehlberg 4(5)-pair, where a semi-implicit Rosenbrock-Wanner method is embedded, in order to solve the nonlinear equations. The performance of both methods is discussed in artificial test problems and in technical applications.  相似文献   

14.
Gekeler  E.  Widmann  R. 《Numerische Mathematik》1986,50(2):183-203
Summary Runge-Kutta methods have been generalized to procedures with higher derivatives of the right side ofy=f(t,y) e.g. by Fehlberg 1964 and Kastlunger and Wanner 1972. In the present work some sufficient conditions for the order of consistence are derived for these methods using partially the degree of the corresponding numerical integration formulas. In particular, methods of Gauß, Radau, and Lobatto type are generalized to methods with higher derivatives and their maximum order property is proved. The applied technique was developed by Crouzeix 1975 for classical Runge-Kutta methods. Examples of simple explicit and semi-implicit methods are given up to order 7 and 6 respectively.  相似文献   

15.
Summary A sequence of transformations of a linear system of ordinary differential equations is investigated. It is shown that these transformations produce new systems which represent progressively smaller perturbations of the original set of equations.The transformations are implemented as a basis of a numerical method. Order, stability and error control of this method are analyzed. Numerical examples demonstrate the potential of this approach.  相似文献   

16.
Two families of implicit Runge-Kutta methods with higher derivatives are (re-)considered generalizing classical Runge-Kutta methods of Butcher type and f Ehle type. For generalized Butcher methods the characteristic functionG() is represented by means of the node polynomial directly, thereby showing that in methods of maximum order,G() is connected withs-orthogonal polynomials in exactly the same way as Padé approximations in the classical case.  相似文献   

17.
Summary Estimates concerning the spectrum of a graded matrix and other information useful for a reliable and efficient handling of certain complications in the numerical treatment of some stiff ODE's, can be inexpensively obtained from the factorized Jacobian. The validity of the estimates is studied by considering them as the first step in a block LR algorithm, which may be of interest in its own right. Its convergence properties are examined.Dedicated to Professor Lothar Collatz on the occasion of his 75th birthday  相似文献   

18.
Summary Consider the ODE (ordinary differential equation) that arises from a semi-discretization (discretization of the spatial coordinates) of a first order system form of a fourth order parabolic PDE (partial differential equation). We analyse the stability of the finite difference methods for this fourth order parabolic PDE that arise if one applies the hopscotch idea to this ODE.Often the error propagation of these methods can be represented by a three terms matrix-vector recursion in which the matrices have a certain anti-hermitian structure. We find a (uniform) expression for the stability bound (or error propagation bound) of this recursion in terms of the norms of the matrices. This result yields conditions under which these methods are strongly asymptotically stable (i.e. the stability is uniform both with respect to the spatial and the time stepsizes (tending to 0) and the time level (tending to infinity)), also in case the PDE has (spatial) variable coefficients. A convergence theorem follows immediately.  相似文献   

19.
20.
Summary This paper provides a general framework, called theoretical multiple shooting, within which various numerical methods for stiff boundary value ordinary differential problems can be analyzed. A global stability and error analysis is given, allowing (as much as possible) the specificities of an actual numerical method to come in only locally. We demonstrate the use of our results for both one-sided and symmetric difference schemes. The class of problems treated includes some with internal (e.g. turning point) layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号