首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-only hydrogenases are high-efficiency biocatalysts for the synthesis and cleavage of molecular hydrogen. Their active site is a diiron center, which carries CO and CN ligands. Remarkably, the two iron atoms likely are connected by a non-protein azadithiolate (adt = S-CH2-NH-CH2-S). To dwell on the role of the adt in H2 catalysis, a specific biomimetic diiron compound, 1 = [Fe2(mu-adt-CH2-Ph)(CO)4(PMe3)2], with unprecedented positive reduction potential, has been synthesized and crystallized previously. It comprises two protonation sites, the N-benzyl-adt nitrogen that can hold a proton (H) and the Fe-Fe bond that will formally carry a hydride (Hy). We investigated changes in the solution structure of 1 in its four different protonation states (1', [1H]+, [1HHy]2+, and [1Hy]+) by X-ray absorption spectroscopy at the iron K-edge. EXAFS reveals that already protonation at the adt nitrogen atom causes a change of the ligand geometry involving a significant lengthening of the Fe-Fe distance and CO and PMe3 repositioning, respectively, thereby facilitating the subsequent binding of a bridging hydride. Hydride binding clearly is discernible in the XANES spectra of [1HHy]2+ and [1Hy]+. DFT calculations are in excellent agreement with the experimentally derived structural parameters and provide complementary insights into the electronic structure of the four protonation states. In the iron-only hydrogenases, protonation of the putative adt ligand may cause the bridging CO to move to a terminal position, thereby preparing the active site for hydride binding en route to H2 formation.  相似文献   

2.
3.
The dynamics of the cyanide anion bound to sperm-whale myoglobin is investigated using atomistic simulations. With density-functional theory, a 2D potential energy surface for the cyanide-heme complex is calculated. Two deep minima with a stabilization energy of approximately 50 kcal/mol corresponding to two different binding orientations (Fe-CN and Fe-NC) of the ligand are found. The Fe-CN conformation is favored over Fe-NC by several kcal/mol. Mixed quantum mechanics/molecular mechanics calculations show that the binding orientation affects the bond strength of the ligand, with a significantly different bond length and a 25 cm-1 shift in the fundamental CN-frequency. For the molecular dynamics (MD) simulations, a 3-center fluctuating charge model for the Fe-CN unit is developed that captures polarization and ligand-metal charge transfer. Stability arguments based on the energetics around the active site and the CN- frequency shifts suggest that the Fe-CN conformation with epsilon-protonation of His epsilon 64 are most likely, which is in agreement with experiment. Both equilibrium and nonequilibrium MD simulations are carried out to investigate the relaxation time scale and possible relaxation pathways in bound MbCN. The nonequilibrium MD simulations with a vibrationally excited ligand reveal that vibrational relaxation takes place on a time scale of hundreds of picoseconds within the active site. This finding supports the hypothesis that the experimentally observed relaxation rate (3.6 ps) reflects the repopulation of the electronic ground state.  相似文献   

4.
5.
Dinitrogen complexes of transition metals exhibit different binding geometries of N2 (end-on terminal, end-on bridging, side-on bridging, side-on end-on bridging), which are investigated by spectroscopy and DFT calculations, analyzing their electronic structure and reactivity. For comparison, a bis(mu-nitrido) complex, where the N--N bond has been split, has been studied as well. Most of these systems are highly covalent, and have strong metal-nitrogen bonds. In the present review, particular emphasis is put on a consideration of the activation of the coordinated dinitrogen ligand, making it susceptible to protonation, reactions with electrophiles or cleavage. In this context, theoretical, structural, and spectroscopic data giving informations on the amount of charge on the N2 unit are presented. The orbital interactions leading to a charge transfer from the metals to the dinitrogen ligand and the charge distribution within the coordinated N2 group are analyzed. Correlations between the binding mode and the observed reactivity of N2 are discussed.  相似文献   

6.
It is known that the HIV-1 integrase (IN) strand transfer inhibitors include the chelating fragments forming the coordinating bonds with two Mg2+ ions placed in the IN active site. The subject of the article is the role of these coordination bonds on stability of ligand–IN complexes. For this purpose, a set of ligand–IN complexes was investigated theoretically and experimentally. The theoretical model is based on the quantum-chemistry calculations of coordinating bonds geometry and energy. Solvent effects were taking into account using the implicit water model and the two-stage calculation scheme developed previously. For the experimental part of our study a set of the ligands was synthesized, and their IC50 values of IN inhibiting have been measured. It is shown that the main contribution to ligand–IN complexes stability is caused by the substitution of water molecules by the ligand in the first coordination sphere of two Mg2+ ions, and the change in the polarization energy of the bulk water. It is shown, that acid–base equilibrium and tautomeric forms of the ligands should be taken into account to improve the prediction ability of the theoretical estimations. All these factors are controlled by the chelating fragments of the ligands. It is demonstrated that our theoretical approach based on the consideration of the coordinating bonds allows to separate active ligands (inhibitors) from inactive ones.  相似文献   

7.
The optically active states in a novel (terpyridine)Ru(4H-imidazole) complex displaying an unusually broad and red-shifted absorption in the visible range are investigated experimentally and theoretically. Since this property renders the complex promising for an application as sensitizer in dye-sensitized solar cells, a detailed knowledge on the correlation between features in the absorption spectrum and structural elements is indispensable in order to develop strategies for spectroscopy/theory-guided design of such molecular components. To this aim, time-dependent density functional theory calculations, including solvent effects, are employed to analyze the experimental UV-vis absorption and resonance Raman (RR) spectra of the unprotonated and protonated forms of the complex. This provides a detailed photophysical picture for a complex belonging to a novel class of Ru-polypyridine black absorbers, which can be tuned by external pH stimuli. The complex presents two absorption maxima in the visible region, which are assigned by the calculations to metal-to-ligand charge transfer (MLCT) and intra-ligand states, respectively. RR simulations are performed in resonance with both bands and are found to correctly reproduce the observed effects of protonation. Finally, the examination of the molecular orbitals and of the RR spectra for the MLCT state shows that protonation favors a charge transfer excitation to the 4H-imidazole ligand.  相似文献   

8.
The protonation of N2 bound to the active center of nitrogenase has been investigated using state-of-the-art density-functional theory calculations. Dinitrogen in the bridging mode is activated by forming two bonds to Fe sites, which results in a reduction of the energy for the first hydrogen transfer by 123 kJ/mol. The axial binding mode with open sulfur bridge is less reactive by 30 kJ/mol and the energetic ordering of the axial and bridged binding modes is reversed in favor of the bridging dinitrogen during the first protonation. Protonation of the central ligand is thermodynamically favorable but kinetically hindered. If the central ligand is protonated, the proton is transferred to dinitrogen following the second protonation. Protonation of dinitrogen at the Mo site does not lead to low-energy intermediates.  相似文献   

9.
Epik is a computer program for predicting pKa values for drug-like molecules. Epik can use this capability in combination with technology for tautomerization to adjust the protonation state of small drug-like molecules to automatically generate one or more of the most probable forms for use in further molecular modeling studies. Many medicinal chemicals can exchange protons with their environment, resulting in various ionization and tautomeric states, collectively known as protonation states. The protonation state of a drug can affect its solubility and membrane permeability. In modeling, the protonation state of a ligand will also affect which conformations are predicted for the molecule, as well as predictions for binding modes and ligand affinities based upon protein–ligand interactions. Despite the importance of the protonation state, many databases of candidate molecules used in drug development do not store reliable information on the most probable protonation states. Epik is sufficiently rapid and accurate to process large databases of drug-like molecules to provide this information. Several new technologies are employed. Extensions to the well-established Hammett and Taft approaches are used for pKa prediction, namely, mesomer standardization, charge cancellation, and charge spreading to make the predicted results reflect the nature of the molecule itself rather just for the particular Lewis structure used on input. In addition, a new iterative technology for generating, ranking and culling the generated protonation states is employed. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In this paper we present our reworked approach to generate ligand protonation states with our structure preparation tool SPORES (Structure PrOtonation and REcognition System). SPORES can be used for the preprocessing of proteins and protein–ligand complexes as e.g. taken from the Protein Data Bank as well as for the setup of 3D ligand databases. It automatically assigns atom and bond types, generates different protonation, tautomeric states as well as different stereoisomers. In the revised version, pKa calculations with the ChemAxon software MARVIN are used either to determine the likeliness of a combinatorial generated protonation state or to determine the titrable atoms used in the combinatorial approach. Additionally, the MARVIN software is used to predict microspecies distributions of ligand molecules. Docking studies were performed with our recently introduced program PLANTS (Protein–Ligand ANT System) on all protomers resulting from the three different selection methods for the well established CCDC/ASTEX clean data set demonstrating the usefulness of especially the latter approach.  相似文献   

11.
We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.  相似文献   

12.
Lovell T  Li J  Noodleman L 《Inorganic chemistry》2001,40(20):5267-5278
Using the density functional optimized active site geometries obtained in the accompanying paper (Lovell, T.; Li, J.; Noodleman, L. Inorg. Chem. 2001, 40, 5251), a combined density functional and electrostatics approach has been applied to further address attendant uncertainties in the protonation states of the bridging ligands for MMOH(ox). The acidities (pK(a)s) associated with the bridging H(2)O ligand in Methylococcus capsulatus and corresponding energetics of each active site cluster interacting with the protein environment have been evaluated. The pK(a) calculations in combination with the results of the gas phase DFT studies allow the active site cluster in Methylosinustrichosporium to be best described as a diiron unit bridged by 2OH(-) ligands having an overall neutral net cluster charge. The presence of the exogenous acetate in M. capsulatus reveals a diiron unit bridged by 1OH(-) and 1H2O which asymmetrically shares its proton with a second-shell acetate in a very short strong AcO..H...OH hydrogen bond. For all MMOH(ox) and MMOH(red) active sites examined, significant Fe-ligand covalency is evident from the ESP atom charges, consistent with very strong ligand --> metal charge transfer from the muOH(-) and mu-carboxylato bridging ligands. The magnitude of electrostatic interaction of the individual protein residues in the active domain with the active site has been assessed via an energy decomposition scheme. Important second-shell residues are highlighted for the next level of quantum mechanics based calculations or alternatively for site-directed mutagenesis studies. Finally, from the known structural and spectroscopic evidence and the DFT studies, a possible mechanism is suggested for the conversion of MMOH(ox) into MMOH(red) that involves a combination of protein residues and solvent-derived ligands from the second coordination sphere.  相似文献   

13.
Electronic structures of iron(II) and iron(III) porphyrins are studied with density functional theory (DFT) using the GGA exchange functional OPTX in combination with the correlation functional PBE (OPBE) and with the correlation functional Perdew (OPerdew) together with a triple zeta-type basis set. These functionals, known for accurately predicting the spin ground state of iron complexes, are evaluated against other functionals for their performance in calculating relative energies for the various electronic states of both the iron porphyrins. The calculated energy orderings are triplet < quintet < singlet for the iron(II) porphyrin and quartet < sextet < doublet for the iron(III) porphyrin cation. Complexation by a thiolate ion (SH-) changes the preferred ground state for both species to high spin. This thiolate complex is used as a mimic for the cytochrome P450s active site to model the first step of the catalytic cycle of this enzyme. This first step is believed to concern the removal of an axial oxygen donating ligand from the hexacoordinated aqua-thiolate-porphyrin-iron(III) resting state. The DFT results suggest that this is not a free water molecule, because of its repulsive nature, but that it has instead hydroxy anion character. These calculations are in line with the experimentally observed change in the spin state from low to high spin upon this removal of the axial hydroxo ligand by binding of the substrate in the heme pocket of cytochrome P450.  相似文献   

14.
BTBPs represent an important class of tetradentate heterocyclic ligands with N-donor binding sites that have been recently developed to separate trivalent actinides from lanthanides. We first investigate by QM calculations the conformational properties, basicity and complexation energies with Eu(NO(3))(3), comparing BTBP derivatives with alkyl substituents on the pyridinyl or triazinyl moieties to their conformationally cis-locked BTPhen analogues. The latter, preorganized for protonation and complexation, are found to be more basic and to afford more stable complexes. We next explore the interfacial behavior of CyMe(4)BTBP in its neutral versus protonated states and of 1:1 Eu(NO(3))(3)(CyMe(4)BTBP) complexes at the aqueous interface with an octanol-hexane mixture. The neutral BTBP ligand displays no visible surface activity, whereas protonated and complexed ligands are surface active. Taken together, the QM and MD results suggest that Eu(III) extraction by BTBPs occurs at the interface, via the protonated form of the ligand in acidic conditions, explaining why the extraction kinetics is slow and why BTPhen ligands are more efficient than BTBPs.  相似文献   

15.
Despite its central role in structure based drug design the determination of the binding mode (position, orientation and conformation in addition to protonation and tautomeric states) of small heteromolecular ligands in protein:ligand complexes based on medium resolution X-ray diffraction data is highly challenging. In this perspective we demonstrate how a combination of molecular dynamics simulations and free energy (FE) calculations can be used to correct and identify thermodynamically stable binding modes of ligands in X-ray crystal complexes. The consequences of inappropriate ligand structure, force field and the absence of electrostatics during X-ray refinement are highlighted. The implications of such uncertainties and errors for the validation of virtual screening and fragment-based drug design based on high throughput X-ray crystallography are discussed with possible solutions and guidelines.  相似文献   

16.
High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe(2)(μ-adt)(CO)(4)(PMe(3))(2)] (1, adt = S-CH(2)-(NCH(2)Ph)-CH(2)-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,Ph), 1HHy(CO,Ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (K?(2,5) emission) electronic transitions, and of Kα RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by ~1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of ~2.3 eV for 1(powder) and ~2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2)-y(2)) levels of ~0.5 eV for the nonhydride and ~0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,Ph). XAES-DFT thus enables verification of the effects of ligand substitutions in solution for guided improvement of [FeFe] catalysts.  相似文献   

17.
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.  相似文献   

18.
RNA plays a central role in many biological processes and is therefore an important target for drug development. In recent years an increasing wealth of structural and functional information about RNA-ligand complexes has been obtained using in vitro selected RNAs (aptamers). However, all those studies focused on structure and changes of the nucleic acid and mostly considered the ligand as a rigid target. To develop a detailed picture of ligand structure and dynamics in RNA-small molecule complexes, the malachite green binding aptamer was studied. Isotopically labeled ligand in complex with RNA was analyzed by NMR spectroscopy in solution. The surprisingly asymmetric changes in the (13)C chemical shift of the ligand methyl groups indicate that the dye undergoes changes in its conformation and charge distribution upon binding. The role of the RNA electrostatic field in this interaction was explored using ab initio calculations of the ligand structure and charge distribution. The results indicate that the uneven charge distribution in the RNA binding pocket provides a major contribution to the driving force of the ligand structural changes. The observation that not only the RNA adapts to the ligand, in what is called adaptive binding, but that the ligand itself also undergoes conformational changes ("induced fit") is crucial for the rational design of RNA ligands and for understanding the properties of RNA-ligand complexes.  相似文献   

19.
The molecular and electronic structure of the Fe 6S 6 H-cluster of [FeFe] hydrogenase in relevant redox and protonation states have been investigated by DFT. The calculations have been carried out according to the broken symmetry approach and considering different environmental conditions. The large negative charge of the H-cluster leads, in a vacuum, to structures different from those observed experimentally in the protein. A better agreement with experimental data is observed for solvated complexes, suggesting that the protein environment could buffer the large negative charge of the H-cluster. The comparison of Fe 6S 6 and Fe 2S 2 DFT models shows that the presence of the Fe 4S 4 moiety does not affect appreciably the geometry of the [2Fe] H cluster. In particular, the Fe 4S 4 cluster alone cannot be invoked to explain the stabilization of the mu-CO forms observed in the enzyme (relative to all-terminal CO species). As for protonation of the hydrogen cluster, it turned out that mu-H species are always more stable than terminal hydride isomers, leading to the conclusion that specific interactions of the H-cluster with the environment, not considered in our calculations, would be necessary to reverse the stability order of mu-H and terminal hydrides. Otherwise, protonation of the metal center and H 2 evolution in the enzyme are predicted to be kinetically controlled processes. Finally, subtle modifications in the H-cluster environment can change the relative stability of key frontier orbitals, triggering electron transfer between the Fe 4S 4 and the Fe 2S 2 moieties forming the H-cluster.  相似文献   

20.
The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS(-))-, sulfenate (RSO(-))-, and sulfinate (RSO(2)(-))-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO(-) species changes upon protonation as the S-O bond is elongated (by approximately 0.1 A). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe(III) in the active site of NHase as CysS(-), CysSOH, and CysSO(2)(-) both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z(eff) of the Fe and reveals that the Fe in [FeNO](6) NHase species has a Z(eff) very similar to that of its photolyzed Fe(III) counterpart. DFT calculations reveal that this results from the strong pi back-bonding into the pi antibonding orbital of NO, which shifts significant charge from the formally t(2)(6) low-spin metal to the coordinated NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号