首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

2.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

3.
This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, chattering phenomena in the control efforts can be reduced. The sliding mode design procedure not only guarantees the stability and robustness of the proposed AFSMC, but also the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and synchronization performance of the advocated design methodology.  相似文献   

4.
This paper proposes a novel fractional-order sliding mode approach for stabilization and synchronization of a class of fractional-order chaotic systems. Based on the fractional calculus a stable integral type fractional-order sliding surface is introduced. Using the fractional Lyapunov stability theorem, a single sliding mode control law is proposed to ensure the existence of the sliding motion in finite time. The proposed control scheme is applied to stabilize/synchronize a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. Some numerical simulations are performed to confirm the theoretical results of the paper. It is worth noticing that the proposed fractional-order sliding mode controller can be applied to control a broad range of fractional-order dynamical systems.  相似文献   

5.
A sliding mode control technique is introduced for exponential synchronization of chaotic systems. These systems are described by a general form including matched and unmatched nonlinear functions. A new hitting-free switching surface of proportional-integral type is proposed. This type of switching surface is without the hitting process if the attraction of sliding manifold is ensured. This property makes it easy to exponentially synchronize the master-slave chaotic systems. Based on this switching surface, a robust sliding mode controller (SMC) is derived to guarantee the attraction of sliding manifold even when the system is subjected to input uncertainties. An example is included to illustrate the results developed in this paper.  相似文献   

6.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

7.
This paper is concerned with the synchronization problem for a class of hyperchaotic chaotic systems. Using sliding mode control approach and backstepping control, a robust control scheme is proposed to make most of the synchronization errors of the systems to zero for matched and unmatched uncertainties. And only one of the synchronization errors of the systems may not be zero, but it is bounded. Meanwhile, the chattering phenomenon is eliminated. The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form. Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.  相似文献   

8.
For the sliding mode controller of uncertain chaotic systems subject to input nonlinearity, the upper bound of the norm of uncertainties is commonly used to determine the controller parameter. However, this will cause serious chattering. In order to overcome this drawback, two new sliding mode controllers are proposed to ensure robust synchronization for a classes of chaotic systems with input nonlinearities and external uncertainty. Compared with the existing results, the proposed controllers can effectively reduce the chattering nearby sliding mode and improve the dynamic performance of the systems. Simulation results are provided to verify the proposed methods.  相似文献   

9.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

10.
We apply the active sliding mode control technique to realize the modified projective synchronization of the chaotic systems. The disturbances are considered both in the drive system and the response system. The sufficient conditions for the modified projective synchronization both the non-identical and identical chaotic systems are presented. The corresponding numerical simulations are provided to illuminate the effectiveness of the proposed active sliding mode controllers.  相似文献   

11.
This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur’e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment.  相似文献   

12.
In this paper, a robust adaptive sliding mode controller (RASMC) is proposed to realize chaos synchronization between two different chaotic systems with uncertainties, external disturbances and fully unknown parameters. It is assumed that both master and slave chaotic systems are perturbed by uncertainties, external disturbances and unknown parameters. The bounds of the uncertainties and external disturbances are assumed to be unknown in advance. Suitable update laws are designed to tackle the uncertainties, external disturbances and unknown parameters. For constructing the RASMC a simple sliding surface is first designed. Then, the RASMC is derived to guarantee the occurrence of the sliding motion. The robustness and stability of the proposed RASMC is proved using Lyapunov stability theory. Finally, the introduced RASMC is applied to achieve chaos synchronization between three different pairs of the chaotic systems (Lorenz–Chen, Chen–Lorenz, and Liu–Lorenz) in the presence of the uncertainties, external disturbances and unknown parameters. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed RASMC.  相似文献   

13.
In this paper, synchronization between unidirectionally coupled Lü chaotic systems with noise perturbation is investigated theoretically and numerically. Sufficient conditions of synchronization between these noise-perturbed systems are established by means of the so-called sliding mode control method. Some numerical simulations are also included to visualize the effectiveness and the feasibility of the developed approach.  相似文献   

14.
研究了一类混沌系统的函数投影同步问题.基于Lyapunov稳定性理论和主动滑模控制方法,设计了主动滑模控制器,实现混沌系统的函数投影同步.数值仿真验证了该控制器的有效性和正确性.  相似文献   

15.
A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.  相似文献   

16.
This paper investigates the robust synchronization problem for a class of chaotic systems with external disturbances. By using disturbance-observer-based control (DOBC) and LMI approach, the disturbance observers are developed to ensure the boundedness of the disturbance error dynamical. Then, by employing the sliding mode control technique, an adaptive control law is established to eliminate the effect of disturbance error to realize synchronization between the master and slave systems. Finally, the corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

17.
-In this paper, we investigate the synchronization problems of chaotic fuzzy cellular neural networks with time-varying delays. To overcome the difficulty that complete synchronization between non-identical chaotic neural networks cannot be achieved only by utilizing output feedback control, we use a sliding mode control approach to study the synchronization of non-identical chaotic fuzzy cellular neural networks with time-varying delays, where the parameters and activation functions are mismatched. This research demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results.  相似文献   

18.
研究了整数阶分数阶van der pol情绪混沌模型的滑模同步问题,利用分数阶微积分给出了情绪模型的主从系统取得同步的充分条件,研究表明,一定条件下,Van der pol情绪模型的主从系统能够达到同步,数值仿真验证了该方法的可行性.  相似文献   

19.
In this paper, the problem of finite-time chaos synchronization between two different chaotic systems with fully unknown parameters is investigated. First, a new nonsingular terminal sliding surface is introduced and its finite-time convergence to the zero equilibrium is proved. Then, appropriate adaptive laws are derived to tackle the unknown parameters of the systems. Afterwards, based on the adaptive laws and finite-time control idea, an adaptive sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time. It is mathematically proved that the introduced sliding mode technique has finite-time convergence and stability in both reaching and sliding mode phases. Finally, some numerical simulations are presented to demonstrate the applicability and effectiveness of the proposed technique.  相似文献   

20.
This paper addresses chaos anti-synchronization of uncertain unified chaotic systems with dead-zone input nonlinearity. Using the sliding mode control technique and Lyapunov stability theory, a proportional–integral (PI) switching surface is proposed to ensure the stability of the closed-loop error system in sliding mode. Then a sliding mode controller (SMC) is proposed to guarantee the hitting of the switching surface even with uncertainties and the control input containing dead-zone nonlinearity. Some simulation results are included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号