首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Artificial bee colony (ABC) algorithm invented recently by Karaboga is a biological-inspired optimization algorithm, which has been shown to be competitive with some conventional biological-inspired algorithms, such as genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO). However, there is still an insufficiency in ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by PSO, we propose an improved ABC algorithm called gbest-guided ABC (GABC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GABC algorithm can outperform ABC algorithm in most of the experiments.  相似文献   

2.
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.  相似文献   

3.
The Artificial Bee Colony (ABC) algorithm is one of the most recent swarm intelligence based algorithms which simulates the foraging behavior of honey bee colonies. In this work, a particle swarm inspired multi-elitist ABC algorithm named PS-MEABC is proposed and applied for real-parameter optimization. In this modified version, the global best solution and an elitist randomly selected from the elitist archive are used to modify parameters of each food source in either onlooker bees or employed bees phases. PS-MEABC is compared with 5 state-of-the-art swarm based algorithms on CEC05 and BBOB12 benchmark functions in terms of four metrics: the mean error, the best error, the success rate (SR) and the expected running time (ERT). Wilcoxon signed ranks test results on the mean and the best error show that the performance of PS-MEABC is significantly better than or at least similar to these algorithms, and PS-MEABC has wider application range in terms of the success rate and faster convergence speed in terms of the expected running time. Our algorithm is comparable to its competitors with a fewer control parameters to be tuned.  相似文献   

4.
An algorithm called DE-PSO is proposed which incorporates concepts from DE and PSO, updating particles not only by DE operators but also by mechanisms of PSO. The proposed algorithm is tested on several benchmark functions. Numerical comparisons with different hybrid meta-heuristics demonstrate its effectiveness and efficiency.  相似文献   

5.
Inspired by the migratory behavior in the nature, a novel particle swarm optimization algorithm based on particle migration (MPSO) is proposed in this work. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At periodic stage in the evolution, some particles migrate from one complex to another to enhance the diversity of the population and avoid premature convergence. It further improves the ability of exploration and exploitation. Simulations for benchmark test functions illustrate that the proposed algorithm possesses better ability to find the global optima than other variants and is an effective global optimization tool.  相似文献   

6.
It is well known that the flow-shop scheduling problem (FSSP) is a branch of production scheduling and is NP-hard. Now, many different approaches have been applied for permutation flow-shop scheduling to minimize makespan, but current algorithms even for moderate size problems cannot be solved to guarantee optimality. Some literatures searching PSO for continuous optimization problems are reported, but papers searching PSO for discrete scheduling problems are few. In this paper, according to the discrete characteristic of FSSP, a novel particle swarm optimization (NPSO) algorithm is presented and successfully applied to permutation flow-shop scheduling to minimize makespan. Computation experiments of seven representative instances (Taillard) based on practical data were made, and comparing the NPSO with standard GA, we obtain that the NPSO is clearly more efficacious than standard GA for FSSP to minimize makespan.  相似文献   

7.
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in the ABC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by differential evolution (DE), we propose a modified ABC algorithm (denoted as ABC/best), which is based on that each bee searches only around the best solution of the previous iteration in order to improve the exploitation. In addition, to enhance the global convergence, when producing the initial population and scout bees, both chaotic systems and opposition-based learning method are employed. Experiments are conducted on a set of 26 benchmark functions. The results demonstrate good performance of ABC/best in solving complex numerical optimization problems when compared with two ABC based algorithms.  相似文献   

8.
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The introduced catfish particles improve the performance of PSO considerably. Unlike other ordinary particles, the catfish particles initialize a new search from extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not changed for a certain number of consecutive iterations. This results in further opportunities of finding better solutions for the swarm by guiding the entire swarm to promising new regions of the search space and accelerating the search. The introduced chaotic maps strengthen the solution quality of PSO and CatfishPSO significantly. The resulting improved PSO and CatfishPSO are called chaotic PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), respectively. PSO, C-PSO, CatfishPSO, C-CatfishPSO, as well as other advanced PSO procedures from the literature were extensively compared on several benchmark test functions. Statistical analysis of the experimental results indicate that the performance of C-CatfishPSO is better than the performance of PSO, C-PSO, CatfishPSO and that C-CatfishPSO is also superior to advanced PSO methods from the literature.  相似文献   

9.
This paper presents a novel characterization method for high-loss piezoelectric composite material based on particle swarm optimization algorithm. This proposed method was applied to determine the properties parameters of 1–3 PZT5A/epoxy composite piezoelectric material with the thickness vibration mode. The analysis results show that this method has more accurate reconstructed values, faster convergence speed compared to the method using simulated annealing algorithm published in the literature under the same condition. Good agreement between the measured electrical impedance curve and the fitting one also verifies that this method can determine precise materials parameters. This is very useful for the accurate characterization of piezoelectric materials with the unknown parameters.  相似文献   

10.
The hybrid algorithm that combined particle swarm optimization with simulated annealing behavior (SA-PSO) is proposed in this paper. The SA-PSO algorithm takes both of the advantages of good solution quality in simulated annealing and fast searching ability in particle swarm optimization. As stochastic optimization algorithms are sensitive to their parameters, proper procedure for parameters selection is introduced in this paper to improve solution quality. To verify the usability and effectiveness of the proposed algorithm, simulations are performed using 20 different mathematical optimization functions with different dimensions. The comparative works have also been conducted among different algorithms under the criteria of quality of the solution, the efficiency of searching for the solution and the convergence characteristics. According to the results, the SA-PSO could have higher efficiency, better quality and faster convergence speed than compared algorithms.  相似文献   

11.
Implementing efficient inspection policies is much important for the organizations to reduce quality related costs. In this paper, a particle swarm optimization (PSO) algorithm is proposed to determine the optimal inspection policy in serial multi-stage processes. The policy consists of three decision parameters to be optimized; i.e. the stages in which inspection occurs, tolerance of inspection, and size of sample to inspect. Total inspection cost is adopted as the performance measure of the algorithm. A numerical example is investigated in two phases, i.e. fixed sample size and sample size as a decision parameter, to ensure the practicality and validity of the proposed PSO algorithm. It is shown that PSO gives better results in comparison with two other algorithms proposed by earlier works.  相似文献   

12.
Improved particle swarm algorithm for hydrological parameter optimization   总被引:1,自引:0,他引:1  
In this paper, a new method named MSSE-PSO (master-slave swarms shuffling evolution algorithm based on particle swarm optimization) is proposed. Firstly, a population of points is sampled randomly from the feasible space, and then partitioned into several sub-swarms (one master swarm and other slave swarms). Each slave swarm independently executes PSO or its variants, including the update of particles’ position and velocity. For the master swarm, the particles enhance themselves based on the social knowledge of master swarm and that of slave swarms. At periodic stage in the evolution, the master swarm and the whole slave swarms are forced to mix, and points are then reassigned to several sub-swarms to ensure the share of information. The process is repeated until a user-defined stopping criterion is reached. The tests of numerical simulation and the case study on hydrological model show that MSSE-PSO remarkably improves the accuracy of calibration, reduces the time of computation and enhances the performance of stability. Therefore, it is an effective and efficient global optimization method.  相似文献   

13.
The performance of a scheduling system, in practice, is not evaluated to satisfy a single objective, but to obtain a trade-off schedule regarding multiple objectives. Therefore, in this research, I make use of multiple objective decision-making method, a global criterion approach, to develop a multi-objective scheduling problem model with different due-dates on parallel machines processes, in which consider three performance measures, namely minimum run time of every machine, earlierness time (no tardiness) and process time of every job, simultaneously. According to this special multi-objective scheduling problem, the method of reverse order drawing GATT will be proposed, at the same time, bring forward a united search particle swarm optimization algorithm (USPSOA) solves this multi-objective scheduling problem. The validity and adaptability of the USPSOA is investigated through experimental results.  相似文献   

14.
A new modification to the particle swarm optimization (PSO) algorithm is proposed aiming to make the algorithm less sensitive to selection of the initial search domain. To achieve this goal, we release the boundaries of the search domain and enable each boundary to drift independently, guided by the number of collisions with particles involved in the optimization process. The gradual modification of the active search domain range enables us to prevent particles from revisiting less promising regions of the search domain and also to explore the areas located outside the initial search domain. With time, the search domain shrinks around a region holding a global extremum. This helps improve the quality of the final solution obtained. It also makes the algorithm less sensitive to initial choice of the search domain ranges. The effectiveness of the proposed Floating Boundary PSO (FBPSO) is demonstrated using a set of standard test functions. To control the performance of the algorithm, new parameters are introduced. Their optimal values are determined through numerical examples.  相似文献   

15.
Differential evolution (DE) is one of the most powerful stochastic search methods which was introduced originally for continuous optimization. In this sense, it is of low efficiency in dealing with discrete problems. In this paper we try to cover this deficiency through introducing a new version of DE algorithm, particularly designed for binary optimization. It is well-known that in its original form, DE maintains a differential mutation, a crossover and a selection operator for optimizing non-linear continuous functions. Therefore, developing the new binary version of DE algorithm, calls for introducing operators having the major characteristics of the original ones and being respondent to the structure of binary optimization problems. Using a measure of dissimilarity between binary vectors, we propose a differential mutation operator that works in continuous space while its consequence is used in the construction of the complete solution in binary space. This approach essentially enables us to utilize the structural knowledge of the problem through heuristic procedures, during the construction of the new solution. To verify effectiveness of our approach, we choose the uncapacitated facility location problem (UFLP)—one of the most frequently encountered binary optimization problems—and solve benchmark suites collected from OR-Library. Extensive computational experiments are carried out to find out the behavior of our algorithm under various setting of the control parameters and also to measure how well it competes with other state of the art binary optimization algorithms. Beside UFLP, we also investigate the suitably of our approach for optimizing numerical functions. We select a number of well-known functions on which we compare the performance of our approach with different binary optimization algorithms. Results testify that our approach is very efficient and can be regarded as a promising method for solving wide class of binary optimization problems.  相似文献   

16.
《Optimization》2012,61(4):1057-1080
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. The HGSO algorithm embeds predatory behaviour of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the GSO with differential evolution on the basis of a two-population co-evolution mechanism. In addition, to overcome the premature convergence, the local search strategy based on simulated annealing is applied to make the search of GSO approach the true optimum solution gradually. Finally, several benchmark functions show that HGSO has faster convergence efficiency and higher computational precision, and is more effective for solving constrained multi-modal function optimization problems.  相似文献   

17.
The flexible polyhedron (simplex) search algorithm is reviewed and some of its shortcomings highlighted. Particularly, the fixed search parameters are shown to be a sure liability and an improvement is proposed. A unidirectional optimal search algorithm is substituted for the set of fixed rules usually employed to modify the simplex. This modification proves especially effective in dealing with “narrow valley” situations, normally encountered whenever the decision variables exhibit some degree of correlation. The new adaptive algorithm compares well with the parent simplex method, featuring less function evaluations and better convergence properties in cases where the classical search techniques perform poorly or fail altogether.  相似文献   

18.
Swarm intelligence is one of the most promising area for the researchers in the field of numerical optimization. Researchers have developed many algorithms by simulating the swarming behavior of various creatures like ants, honey bees, fish, birds and the findings are very motivating. In this paper, a new approach for numerical optimization is proposed by modeling the foraging behavior of spider monkeys. Spider monkeys have been categorized as fission–fusion social structure based animals. The animals which follow fission–fusion social systems, split themselves from large to smaller groups and vice-versa based on the scarcity or availability of food. The proposed swarm intelligence approach is named as Spider Monkey Optimization (SMO) algorithm and can broadly be classified as an algorithm inspired by intelligent foraging behavior of fission–fusion social structure based animals.  相似文献   

19.
In this paper we present a multi-start particle swarm optimization algorithm for the global optimization of a function subject to bound constraints. The procedure consists of three main steps. In the initialization phase, an opposition learning strategy is performed to improve the search efficiency. Then a variant of the adaptive velocity based on the differential operator enhances the optimization ability of the particles. Finally, a re-initialization strategy based on two diversity measures for the swarm is act in order to avoid premature convergence and stagnation. The strategy uses the super-opposition paradigm to re-initialize particles in the swarm. The algorithm has been evaluated on a set of 100 global optimization test problems. Comparisons with other global optimization methods show the robustness and effectiveness of the proposed algorithm.  相似文献   

20.
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号